No calculators? Seriously?

Calculus Level 4

Without using a computer, compare A = 1 2 3 4 5 . . . A=1\sqrt { 2\sqrt { 3\sqrt { 4\sqrt { 5\sqrt { ... } } } } } and B = e B=e .

A > B A>B A = B A=B A < B A<B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Sep 11, 2020

A = k = 1 k 1 2 k 1 \large \displaystyle A = \prod_{k=1}^{\infty} k^{\frac{1}{2^{k-1}}}

ln ( A ) = k = 1 ln ( k ) 2 k 1 \large \displaystyle \ln(A) = \sum_{k=1}^{\infty} \frac{ \ln(k) }{2^{k-1}}

ln ( A ) = 2 k = 1 ln ( k ) 2 k \large \displaystyle \ln(A) = 2 \sum_{k=1}^{\infty} \frac{ \ln(k) }{2^k}

Since ln ( 1 ) = 0 \ln(1) = 0 :

ln ( A ) = 2 k = 2 ln ( k ) 2 k \large \displaystyle \ln(A) = 2 \sum_{k=2}^{\infty} \frac{ \ln(k) }{2^k}

Since for k 3 k \geq 3 we have ln ( k ) > 1 \ln(k) > 1 and, for although ln ( 2 ) < 1 \ln(2) < 1 , in the sum all the terms for 3 3 and above make:

ln ( A ) > 2 k = 2 1 2 k \large \displaystyle \ln(A) > 2 \sum_{k=2}^{\infty} \frac{ 1 }{2^k}

ln ( A ) > 2 ( 1 4 1 1 2 ) \large \displaystyle \ln(A) > 2 \left ( \frac{\frac14}{1 - \frac12} \right )

ln ( A ) > 1 \large \displaystyle \ln(A) > 1

A > e = B \large \displaystyle A > e = B

A > B \color{#3D99F6} \boxed{ \large \displaystyle A > B}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...