No Equality

Algebra Level pending

x y 3 y + 1 \dfrac{xy}{3y+1}

If x x and y y are real numbers such that x 2 y 2 + 2 y + 1 = 0 x^2 y^2 + 2y + 1 = 0 , find the sum of both the maximum value and minimum value of the expression above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Oct 21, 2015

We have ( x y ) 2 + 2 y + 1 = 0 (xy)^2+2y+1=0 [ x y 3 y + 1 × ( 3 y + 1 ) ] 2 + 2 y + 1 = 0 \Leftrightarrow[\dfrac{xy}{3y+1}\times(3y+1)]^2+2y+1=0 We called A = x y 3 y + 1 A=\dfrac{xy}{3y+1} So we get A 2 ( 3 y + 1 ) 2 + 2 y + 1 = 0 A^2(3y+1)^2+2y+1=0 9 A 2 y 2 + ( 6 A 2 + 2 ) y + A 2 + 1 = 0 \Leftrightarrow9A^2y^2+(6A^2+2)y+A^2+1=0 Set A 2 = a ( a 0 ) A^2=a(a\geq0) = > 9 a y 2 + ( 6 a + 2 ) y + a + 1 = 0 =>9ay^2+(6a+2)y+a+1=0 Δ = ( 6 a + 2 ) 2 4 × 9 a ( a + 1 ) \Delta=(6a+2)^2-4\times9a(a+1) We get a real value of y when Δ 0 \Delta\geq0 ( 6 a + 2 ) 2 4 × 9 a ( a + 1 ) 0 \Leftrightarrow(6a+2)^2-4\times9a(a+1)\geq0 36 a 2 + 12 a + 4 36 a 2 36 a 0 \Leftrightarrow36a^2+12a+4-36a^2-36a\geq0 4 12 a 0 \Leftrightarrow4-12a\geq0 a 1 3 \Leftrightarrow a\leq\dfrac{1}{3} A 2 1 3 \Rightarrow A^2\leq\dfrac{1}{3} 1 3 A 1 3 \Leftrightarrow -\sqrt{\dfrac{1}{3}}\leq A\leq\sqrt{\dfrac{1}{3}} A m i n + A m a x = 0 \Rightarrow A_{min}+A_{max} =0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...