No Fibbing 2

F n F_{n} denotes the n t h n^{th} term of the Fibonacci sequence where F 1 = 1 F_{1} = 1 and F 2 = 1 F_{2} = 1

G x = n = 3 x ( F n F n 1 F n 2 ) G_{x} = \displaystyle \sum_{n=3}^x {(F_n F_{n-1} F_{n-2})} where x 3 x \geq 3

lim x G x + 1 G x = a + b c \displaystyle \lim_{x \to \infty} \frac {G_{x+1}}{G_x} = \frac {a + \sqrt{b}}{c} where a , b , c a,b,c are positive coprime integers.

What is the value of a + b + c a + b + c


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Sapiano
Jul 12, 2019

G x + 1 G x = G x + ( F x + 1 F x F x 1 ) G x \frac {G_{x+1}}{G_x} = \frac {G_x + (F_{x+1}F_{x}F_{x-1})}{G_x} = 1 + F x + 1 F x F x 1 G x 1 + \frac {F_{x+1}F_{x}F_{x-1}}{G_x}

Using the relationship ϕ = lim n F n + 1 F n = 1 + 5 2 \phi = \lim_{n \to \infty}\ \frac {F_{n+1}}{F_n} = \frac {1 + \sqrt{5}}{2} we know that lim x \lim_{x \to \infty} F x + 1 F x F x 1 F_{x+1}F_{x}F_{x-1} = ϕ 3 F x F x 1 F x 2 \phi ^3 F_{x}F_{x-1}F_{x-2}

So lim x \lim_{x \to \infty} G x + 1 G x = 1 + ϕ 3 F x F x 1 F x 2 G x \frac {G_{x+1}}{G_x} = 1 + \frac {\phi^3 F_{x}F_{x-1}F_{x-2}}{G_x} E q u \Rightarrow Equ 1 1

lim x \lim_{x \to \infty} G x + 1 G x G x G x 1 \frac {G_{x+1}}{G_x} \equiv \frac {G_{x}}{G_{x-1}}

G x G x 1 \frac {G_{x}}{G_{x-1}} = G x G x ( F x F x 1 F x 2 ) \frac {G_{x}}{G_{x} - (F_{x}F_{x-1}F_{x-2})}

lim x \lim_{x \to \infty} 1 + ϕ 3 ( F x F x 1 F x 2 ) G x 1 + \frac {\phi ^3 (F_{x}F_{x-1}F_{x-2})}{G_x} = G x G x ( F x F x 1 F x 2 ) \frac {G_{x}}{G_{x} - (F_{x}F_{x-1}F_{x-2})} E q u \Rightarrow Equ 2 2

Let F x F x 1 F x 2 = A F_{x}F_{x-1}F_{x-2} = A

Using the fact that E q u Equ 1 1 = E q u = Equ 2 2 , lim x \lim_{x \to \infty} 1 + ϕ 3 A G x = G x G x A 1 + \frac {\phi^3 A}{G_x} = \frac {G_x}{G_{x} - A} and G x G x A = 1 + A G x A \frac {G_x}{G_{x} - A} = 1 + \frac {A}{G_{x} - A}

lim x \lim_{x \to \infty} ϕ 3 A G x = A G x A \frac {\phi^3 A}{G_x} = \frac {A}{G_{x} - A}

lim x \lim_{x \to \infty} G x = ϕ 3 A 2 A ϕ 3 A G_x = - \frac {\phi ^3 A^2}{A- \phi ^3 A}

Substituting in to 1 + ϕ 3 A G x 1 + \frac {\phi^3 A}{G_x} : 1 + ϕ 3 A ϕ 3 A 2 A ϕ 3 A 1 + \frac {\phi^3 A}{- \frac {\phi ^3 A^2}{A- \phi ^3 A}}

We find that the ratio simplifies to ϕ 3 = ( 1 + 5 2 ) 3 = 2 + 5 \phi ^3 = ({\frac {1 + \sqrt{5}}{2}})^3 = 2 + \sqrt{5}

So a = 2 , b = 5 , c = 1 a = 2 , b = 5 , c = 1 therefore a + b + c = 8 a + b + c = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...