F n denotes the n t h term of the Fibonacci sequence where F 1 = 1 and F 2 = 1
G x = n = 3 ∑ x ( F n F n − 1 F n − 2 ) where x ≥ 3
x → ∞ lim G x G x + 1 = c a + b where a , b , c are positive coprime integers.
What is the value of a + b + c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
G x G x + 1 = G x G x + ( F x + 1 F x F x − 1 ) = 1 + G x F x + 1 F x F x − 1
Using the relationship ϕ = lim n → ∞ F n F n + 1 = 2 1 + 5 we know that lim x → ∞ F x + 1 F x F x − 1 = ϕ 3 F x F x − 1 F x − 2
So lim x → ∞ G x G x + 1 = 1 + G x ϕ 3 F x F x − 1 F x − 2 ⇒ E q u 1
lim x → ∞ G x G x + 1 ≡ G x − 1 G x
G x − 1 G x = G x − ( F x F x − 1 F x − 2 ) G x
lim x → ∞ 1 + G x ϕ 3 ( F x F x − 1 F x − 2 ) = G x − ( F x F x − 1 F x − 2 ) G x ⇒ E q u 2
Let F x F x − 1 F x − 2 = A
Using the fact that E q u 1 = E q u 2 , lim x → ∞ 1 + G x ϕ 3 A = G x − A G x and G x − A G x = 1 + G x − A A
lim x → ∞ G x ϕ 3 A = G x − A A
lim x → ∞ G x = − A − ϕ 3 A ϕ 3 A 2
Substituting in to 1 + G x ϕ 3 A : 1 + − A − ϕ 3 A ϕ 3 A 2 ϕ 3 A
We find that the ratio simplifies to ϕ 3 = ( 2 1 + 5 ) 3 = 2 + 5
So a = 2 , b = 5 , c = 1 therefore a + b + c = 8