No Fibbing 3

n = 1 100 F n 3 + n = 3 100 F n F n 1 F n 2 n = 1 100 F n 2 = ? \frac {\displaystyle \sum_{n=1}^{100} F_n^3 + \displaystyle \sum_{n=3}^{100} F_n F_{n-1} F_{n-2}}{\displaystyle \sum_{n=1}^{100} F_n^2} \large =\ ?

Notation: F n F_n denotes the n n th Fibonacci number , where F 1 = F 2 = 1 F_1=F_2=1 and F n = F n 1 + F n 2 F_n = F_{n-1}+F_{n-2} for n 3 n \ge 3 .

F 49 F 50 F_{49}F_{50} F 50 F 51 F_{50}F_{51} F 101 F_{101} F 50 2 F_{50} ^2 F 200 F_{200} F 100 F_{100}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 14, 2019

k = 1 n F k F k + 1 F k + 2 = k = 1 n ( F k + 2 F k + 1 ) F k + 1 F k + 2 = k = 1 n ( F k + 1 F k + 2 2 F k + 1 2 F k + 2 ) = k = 1 n ( F k + 1 F k + 2 2 F k + 1 2 ( F k + F k + 1 ) ) = k = 1 n ( F k + 1 F k + 2 2 F k F k + 1 2 F k + 1 3 ) = F n + 1 F n + 2 2 F 1 F 2 2 k = 1 n F k + 1 3 = F n + 1 F n + 2 2 1 k = 2 n + 1 F k 3 = F n + 1 F n + 2 2 k = 1 n + 1 F k 3 \begin{aligned} \sum_{k=1}^n F_k F_{k+1} F_{k+2} &= \sum_{k=1}^n \left(F_{k+2} - F_{k+1} \right) F_{k+1} F_{k+2} \\ &= \sum_{k=1}^n \left(F_{k+1} F_{k+2}^2 - F_{k+1}^2 F_{k+2} \right) \\ &= \sum_{k=1}^n \left(F_{k+1} F_{k+2}^2 - F_{k+1}^2 \left(F_k + F_{k+1} \right) \right) \\ &= \sum_{k=1}^n \left(F_{k+1} F_{k+2}^2 - F_kF_{k+1}^2 - F_{k+1}^3 \right) \\ & = F_{n+1}F_{n+2}^2 - F_1F_2^2- \sum_{k=1}^n F_{k+1}^3 \\ & = F_{n+1}F_{n+2}^2 - 1 - \sum_{k=2}^{n+1} F_k^3 \\ & = F_{n+1}F_{n+2}^2 - \sum_{k=1}^{n+1} F_k^3 \end{aligned}

Therefore,

Q = k = 1 n F k 3 + k = 3 n F k F k 1 F k 2 k = 1 n F k 2 = k = 1 n F k 3 + k = 1 n 2 F k F k + 1 F k + 2 k = 1 n F k 2 Note that k = 1 n F k 2 = F n F n + 1 = k = 1 n F k 3 + F n 1 F n 2 k = 1 n 1 F k 3 F n F n + 1 = F n 3 + F n 1 F n 2 F n F n + 1 = F n 2 ( F n 1 + F n ) F n F n + 1 = F n 2 F n + 1 F n F n + 1 = F n \begin{aligned} Q & = \frac {\sum_{k=1}^n F_k^3 + \sum_{k=3}^n F_k F_{k-1} F_{k-2}}{\sum_{k=1}^n F_k^2} \\ & = \frac {\sum_{k=1}^n F_k^3 + \color{#3D99F6} \sum_{k=1}^{n-2} F_k F_{k+1} F_{k+2}}{\color{#D61F06}\sum_{k=1}^n F_k^2} & \small \color{#D61F06} \text{Note that }\sum_{k=1}^n F_k^2 = F_n F_{n+1} \\ & = \frac {\sum_{k=1}^n F_k^3 + \color{#3D99F6} F_{n-1}F_n^2 - \sum_{k=1}^{n-1} F_k^3}{\color{#D61F06} F_n F_{n+1}} \\ & = \frac {F_n^3 + F_{n-1}F_n^2}{F_n F_{n+1}} = \frac {F_n^2(F_{n-1}+F_n)}{F_n F_{n+1}} \\ & = \frac {F_n^2F_{n+1}}{F_n F_{n+1}} = F_n \end{aligned}

For n = 100 n=100 , the answer is F 100 \boxed{F_{100}} .

Chris Sapiano
Jul 13, 2019

It can be proved geometrically that n = 1 x ( F n 3 ) = ( F x ) 2 F x + 1 n = 3 x F n F n 1 F n 2 {\displaystyle \sum_{n=1}^{x} ({F_{n}} ^3)} = (F_x)^2{F_{x+1}} - \displaystyle \sum_{n=3}^{x} F_n F_{n-1} F_{n-2} for all x 3 x \geq 3

Rearranging we get n = 1 x ( F n 3 ) + n = 3 x F n F n 1 F n 2 = ( F x ) 2 F x + 1 \displaystyle \sum_{n=1}^{x} ({F_{n}} ^3) + \displaystyle \sum_{n=3}^{x} F_n F_{n-1} F_{n-2} = (F_x)^2 {F_{x+1}}

It can also be shown geometrically that F x F x + 1 = n = 1 x ( F n 2 ) F_x F_{x+1} = \displaystyle \sum_{n=1}^{x} ({F_{n}} ^2)

Therefore n = 1 x ( F n 3 ) + n = 3 x F n F n 1 F n 2 = ( F x ) n = 1 x ( F n 2 ) \displaystyle \sum_{n=1}^{x} ({F_{n}} ^3) + \displaystyle \sum_{n=3}^{x} F_n F_{n-1} F_{n-2} = (F_x) \displaystyle \sum_{n=1}^{x} ({F_{n}} ^2)

Rearranging we get n = 1 x ( F n 3 ) + n = 3 x F n F n 1 F n 2 n = 1 x ( F n 2 ) \frac {\displaystyle \sum_{n=1}^{x} ({F_{n}} ^3) + \displaystyle \sum_{n=3}^{x} F_n F_{n-1} F_{n-2}}{\displaystyle \sum_{n=1}^{x} ({F_{n}} ^2)} = = F x F_x

When x = 100 x = 100 the equation is equal to F 100 \boxed{F_{100}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...