No Fibbing

lim x n = 1 x F 2 n 1 n = 1 x F n 2 = a b c \lim_{x \to \infty} \frac {\sum_{n=1}^x F_{2n-1}}{\sum_{n=1}^x F_n^2} = \frac {a-\sqrt b}c

The equation above holds true for positive integers a a , b b , and c c , where b b is square-free. What is a + b + c a+b+c ?

Notation: F n F_{n} denotes the n n th Fibonacci number , where F 1 = F 2 = 1 F_{1} = F_{2} = 1 and F n = F n 1 + F n 2 F_n = F_{n-1}+F_{n-2} for n 3 n \ge 3 .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Sapiano
Jul 11, 2019

It can be easily proved geometrically that n = 1 x F 2 n 1 = F 2 x \displaystyle \sum_{n=1}^x F_{2n-1} = F_{2x}

It can also be proved geometrically that n = 1 x ( F n 2 ) = F x F x + 1 \displaystyle \sum_{n=1}^x ({F_{n}}^2) = F_{x}F_{x+1}

This leaves us with the equation lim x F 2 x F x F x + 1 \displaystyle \lim_{x\to \infty} \frac {F_{2x}}{F_{x}F_{x+1}}

By d'Ocagne's identity, we know that F 2 x = F x ( F x 1 + F x + 1 ) F_{2x} = F_{x}(F_{x-1} + F_{x+1}) leaving us with the equation F x ( F x 1 + F x + 1 ) F x F x + 1 \frac {F_{x}(F_{x-1} + F_{x+1})}{F_{x}F_{x+1}}

This simplifies to 1 + F x 1 F x + 1 1 + \frac {F_{x-1}}{F_{x+1}} .

As x x \rightarrow \infty , The fraction becomes 1 + 1 ϕ 2 1 + \frac {1}{\phi ^2} .

ϕ = 5 + 1 2 \phi = \frac {\sqrt{5} + 1}{2} and therefore 1 + 1 ϕ 2 1 + \frac {1}{\phi ^2} simplifies to 5 5 2 \frac {5 - \sqrt{5}}{2} .

Therefore a + b + c = 12 a + b + c = \boxed{12}

Another way to get that limit is to use the asymptotic from Binet's formula: F k ϕ k 5 . F_k \sim \frac{\phi^k}{\sqrt{5}}.

Patrick Corn - 1 year, 11 months ago
Alex Burgess
Jul 16, 2019

A fairly non rigorous way would be to note that:

If lim x n = 1 x f ( n ) n = 1 x g ( n ) = k \lim_{x\to \infty} \frac{\sum_{n=1}^x f(n)}{\sum_{n=1}^x g(n)} = k , then lim x f ( x ) g ( x ) = k \lim_{x\to \infty} \frac{f(x)}{g(x)} = k .

lim x F 2 n 1 F n 2 = ϕ 2 n 1 5 ϕ 2 n 5 = ϕ 1 × 5 = 5 5 2 \lim_{x\to \infty} \frac{F_{2n-1}}{F_n^2} = \frac{ \frac{ \phi^{2n-1} } {\sqrt5} } { \frac{ \phi^{2n} } {5} } = \phi ^{-1} \times \sqrt5 = \frac{5 - \sqrt5}{2}

Chew-Seong Cheong
Jul 14, 2019

L = lim n k = 1 n F 2 k 1 k = 1 n F k 2 Note that k = 1 n F 2 k 1 = F 2 n and k = 1 n F k 2 = F n F n + 1 = lim n F 2 n F n F n + 1 Binet’s formula: F n = φ n ( φ ) n 5 = lim n 5 ( φ 2 n φ 2 n ) ( φ n + φ n ) ( φ n + 1 φ n 1 ) = 5 φ = 2 5 5 + 1 = 5 5 2 \begin{aligned} L & = \lim_{n \to \infty} \frac {\sum_{k=1}^n F_{2k-1}}{\sum_{k=1}^n F_k^2} & \small \color{#3D99F6} \text{Note that }\sum_{k=1}^n F_{2k-1} = F_{2n} \text{ and } \sum_{k=1}^n F_k^2 = F_n F_{n+1} \\ & = \lim_{n \to \infty} \frac {F_{2n}}{F_nF_{n+1}} & \small \color{#3D99F6} \text{Binet's formula: }F_n = \frac {\varphi^n - (-\varphi)^{-n}}{\sqrt 5} \\ & = \lim_{n \to \infty} \frac {\sqrt 5 \left(\varphi^{2n}-\varphi^{-2n}\right)}{\left(\varphi^n+\varphi^{-n}\right)\left(\varphi^{n+1}-\varphi^{-n-1}\right)} \\ & = \frac {\sqrt 5}\varphi = \frac {2\sqrt 5}{\sqrt 5+1} = \frac {5-\sqrt 5}2 \end{aligned}

Therefore, a + b + c = 5 + 5 + 2 = 12 a+b+c = 5+5+2 = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...