How many solutions of x where 0 ≤ x < 2 π for:
sin x sin 5 x − cos x cos 5 x = 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Cross Multiply:
2 = sin x cos x sin 5 x cos x − sin x cos 5 x
Using the double angle formula:
sin ( a − b ) = sin a cos b − cos a sin b
a = 5 x , b = x
2 = sin x cos x sin ( 5 x − x )
2 = sin x cos x sin 4 x
a = − b ⇒ sin ( 2 a ) = 2 sin a cos a
2 = sin x cos x 2 sin 2 x cos 2 x
2 = sin x cos x 2 ( 2 sin x cos x ) cos 2 x
2 = 4 cos 2 x
2 1 = cos 2 x
Which has 4 solutions.
Problem Loading...
Note Loading...
Set Loading...
sin x sin 5 x − cos x cos 5 x sin x cos x sin 5 x cos x − cos 5 x sin x sin 5 x cos x − cos 5 x sin x sin 4 x 2 sin 2 x cos 2 x sin 2 x ( 2 cos 2 x − 1 ) ⟹ cos 2 x ⟹ x = 2 = 2 = 2 sin x cos x = sin 2 x = sin 2 x = 0 = 2 1 = 6 π , 6 5 π , 6 7 π , 6 1 1 π When sin 2 x = 0 , the equation is undefined. for 0 ≤ x < 2 π
Therefore, there are 4 solutions.