Just Another Regular Trig Problem

Geometry Level 3

How many solutions of x x where 0 x < 2 π 0\le x<2\pi for:

sin 5 x sin x cos 5 x cos x = 2 \large \frac { \sin { 5x } }{ \sin { x } } -\frac { \cos { 5x } }{ \cos { x } } =2

4 0 3 2 7 6 5 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 27, 2017

sin 5 x sin x cos 5 x cos x = 2 sin 5 x cos x cos 5 x sin x sin x cos x = 2 sin 5 x cos x cos 5 x sin x = 2 sin x cos x sin 4 x = sin 2 x 2 sin 2 x cos 2 x = sin 2 x sin 2 x ( 2 cos 2 x 1 ) = 0 cos 2 x = 1 2 When sin 2 x = 0 , the equation is undefined. x = π 6 , 5 π 6 , 7 π 6 , 11 π 6 for 0 x < 2 π \begin{aligned} \frac {\sin 5x}{\sin x} - \frac {\cos 5x}{\cos x} & = 2 \\ \frac {\sin 5x\cos x - \cos 5x \sin x}{\sin x \cos x} & = 2 \\ \sin 5x\cos x - \cos 5x \sin x & = 2 \sin x \cos x \\ \sin 4x & = \sin 2x \\ 2\sin 2x \cos 2x & = \sin 2x \\ \sin 2x (2\cos 2x - 1) & = 0 \\ \implies \cos 2x & = \frac 12 & \small \color{#3D99F6} \text{When }\sin 2x = 0 \text{, the equation is undefined.} \\ \implies x & = \frac \pi 6, \frac {5\pi}6, \frac {7\pi}6, \frac {11\pi}6 & \small \color{#3D99F6} \text{for }0 \le x < 2\pi \end{aligned}

Therefore, there are 4 \boxed{4} solutions.

Tiger Ang
Sep 27, 2017

Cross Multiply:

2 = sin 5 x cos x sin x cos 5 x sin x cos x 2=\frac { \sin { 5x } \cos { x } -\sin { x } \cos { 5x } }{ \sin { x } \cos { x } }

Using the double angle formula:

sin ( a b ) = sin a cos b cos a sin b \boxed {\sin { (a-b)= } \sin { a } \cos { b } -\cos { a } \sin { b } }

a = 5 x , b = x a=5x,b=x

2 = sin ( 5 x x ) sin x cos x 2=\frac { \sin { (5x-x) } }{ \sin { x } \cos { x } }

2 = sin 4 x sin x cos x 2=\frac { \sin { 4x } }{ \sin { x } \cos { x } }

a = b sin ( 2 a ) = 2 sin a cos a \boxed { a=-b\Rightarrow \sin { (2a)= } 2\sin { a } \cos { a } }

2 = 2 sin 2 x cos 2 x sin x cos x 2=\frac { 2\sin { 2x\cos { 2x } } }{ \sin { x } \cos { x } }

2 = 2 ( 2 sin x cos x ) cos 2 x sin x cos x 2=\frac { 2(2\sin { x } \cos { x } )\cos { 2x } }{ \sin { x } \cos { x } }

2 = 4 cos 2 x 2=4\cos { 2x }

1 2 = cos 2 x \frac { 1 }{ 2 } =\cos { 2x }

Which has 4 solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...