No hay negativo cudadros perfectos

Algebra Level 4

Real numbers x 1 , x 2 , x n x_1, x_2, \ldots x_n satisfy the condition

x 1 1 2 + 2 x 2 2 2 + 3 x 3 3 2 + + n x n n 2 = 1 2 ( x 1 + x 2 + x 3 + + x n ) . \sqrt{x_1-1^2}+2\sqrt{x_2-2^2}+3\sqrt{x_3-3^2}+\ldots+n\sqrt{x_n-n^2} = \frac{1}{2}(x_1+x_2+x_3+\ldots+x_n).

Find the value of x 5 x_5 .

Hint: Complete Tables


Por los numeros reales x 1 , x 2 , , x n x_1, x_2, \ldots, x_n que satisfican la condicion

x 1 1 2 + 2 x 2 2 2 + 3 x 3 3 2 + + n x n n 2 = 1 2 ( x 1 + x 2 + x 3 + + x n ) \sqrt{x_1-1^2}+2\sqrt{x_2-2^2}+3\sqrt{x_3-3^2}+\ldots+n\sqrt{x_n-n^2} = \frac{1}{2}(x_1+x_2+x_3+\ldots+x_n)

Encontra el valor de x 5 x_5 .

Pista: Completa los cuadros


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raymond Lin
Aug 23, 2014

The equation can be rewritten as i = 1 n i x i i 2 = 1 2 i = 1 n x i \sum_{i=1}^n i\sqrt{x_i-i^2} = \frac{1}{2} \sum_{i=1}^n x_i . Note that if we substitute x i = 2 i 2 x_i=2i^2 , then the equation becomes i = 1 n i 2 i 2 i 2 = 1 2 i = 1 n 2 i 2 \sum_{i=1}^n i\sqrt{2i^2-i^2} = \frac{1}{2} \sum_{i=1}^n 2i^2 . Both the LHS and RHS simplify to i = 1 n i 2 \sum_{i=1}^n i^2 . Therefore, x i = 2 i 2 x_i=2i^2 satisfies the equation, so x 5 = 2 ( 5 ) 2 = 50 x_5=2(5)^2=\fbox{50} .

Quiero ver un solucion que completo los cuadros. Pero la sustitucion fue muy inteligente.

Matthew Yu - 6 years, 9 months ago

I did as you!

Richard Rodriguez - 6 years, 9 months ago

Because the LHS and RHS each has only one term with x i x_i for 1 i n 1 \le i \le n . We can obtain the solution by equating the LHS and RHS terms with x i x_i .

Therefore,

i x i i 2 = x i 2 i \sqrt{x_i-i^2} = \dfrac{x_i}{2}

4 i 2 ( x i i 2 ) = x i 2 \Rightarrow 4i^2(x_i-i^2) = x_i^2

x i 2 4 i 2 x + 4 i 4 = 0 \quad x_i^2 - 4i^2x + 4i^4 = 0

( x i 2 i 2 ) 2 = 0 \quad (x_i - 2i^2)^2 = 0

x i = 2 i 2 \Rightarrow x_i = 2i^2

For i = 5 i = 5 , x 5 = 2 × 5 2 = 50 x_5 = 2\times 5^2 =\boxed{50}

Looooong borrring solution

From Cauchy Schwarz's inequality, we get

( 1 2 ( i = 1 n x i ) ) 2 = ( i = 1 n i x i i 2 ) 2 ( i = 1 n i 2 ) ( i = 1 n x i i 2 ) \left(\frac{1}{2}\left(\sum_{i=1}^{n} x_{i}\right)\right)^{2} = \left(\sum_{i=1}^{n} i\sqrt{x_{i}-i^{2}}\right)^{2} \leq \left(\sum_{i=1}^{n} i^{2}\right)\left(\sum_{i=1}^{n} x_{i}-i^{2}\right)

1 4 ( i = 1 n x i ) 2 ( n ( n + 1 ) ( 2 n + 1 ) 6 ) ( i = 1 n x i ) ( n ( n + 1 ) ( 2 n + 1 ) 6 ) 2 \displaystyle \frac{1}{4}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq \left(\frac{n(n+1)(2n+1)}{6}\right)\left(\sum_{i=1}^{n} x_{i}\right) - \left(\frac{n(n+1)(2n+1)}{6}\right)^{2}

Multiply both sides by 36 we get

9 ( i = 1 n x i ) 2 6 ( n ( n + 1 ) ( 2 n + 1 ) ) ( i = 1 n x i ) ( n ( n + 1 ) ( 2 n + 1 ) ) 2 \displaystyle 9\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq 6\left(n(n+1)(2n+1)\right)\left(\sum_{i=1}^{n} x_{i}\right) - \left(n(n+1)(2n+1)\right)^{2}

9 ( i = 1 n x i ) 2 6 ( n ( n + 1 ) ( 2 n + 1 ) ) ( i = 1 n x i ) + ( n ( n + 1 ) ( 2 n + 1 ) ) 2 0 \displaystyle 9\left(\sum_{i=1}^{n} x_{i}\right)^{2} - 6\left(n(n+1)(2n+1)\right)\left(\sum_{i=1}^{n} x_{i}\right) + \left(n(n+1)(2n+1)\right)^{2} \leq 0

( 3 ( i = 1 n x i ) n ( n + 1 ) ( 2 n + 1 ) ) 2 0 \displaystyle \left(3\left(\sum_{i=1}^{n} x_{i}\right) - n(n+1)(2n+1)\right)^{2} \leq 0

The only possible case is 3 ( i = 1 n x i ) = n ( n + 1 ) ( 2 n + 1 ) 3\left(\sum_{i=1}^{n} x_{i}\right) = n(n+1)(2n+1)

Therefore, i = 1 n x i = n ( n + 1 ) ( n + 2 ) 3 \sum_{i=1}^{n} x_{i} = \displaystyle \frac{n(n+1)(n+2)}{3}

Take n = 5 n = 5 , n = 4 n = 4 then subtract, and we get x 5 = 110 60 = 50 x_{5} = 110 - 60 = \boxed{50} ~~~

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...