Real numbers x 1 , x 2 , … x n satisfy the condition
x 1 − 1 2 + 2 x 2 − 2 2 + 3 x 3 − 3 2 + … + n x n − n 2 = 2 1 ( x 1 + x 2 + x 3 + … + x n ) .
Find the value of x 5 .
Hint: Complete Tables
Por los numeros reales x 1 , x 2 , … , x n que satisfican la condicion
x 1 − 1 2 + 2 x 2 − 2 2 + 3 x 3 − 3 2 + … + n x n − n 2 = 2 1 ( x 1 + x 2 + x 3 + … + x n )
Encontra el valor de x 5 .
Pista: Completa los cuadros
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Quiero ver un solucion que completo los cuadros. Pero la sustitucion fue muy inteligente.
I did as you!
Because the LHS and RHS each has only one term with x i for 1 ≤ i ≤ n . We can obtain the solution by equating the LHS and RHS terms with x i .
Therefore,
i x i − i 2 = 2 x i
⇒ 4 i 2 ( x i − i 2 ) = x i 2
x i 2 − 4 i 2 x + 4 i 4 = 0
( x i − 2 i 2 ) 2 = 0
⇒ x i = 2 i 2
For i = 5 , x 5 = 2 × 5 2 = 5 0
Looooong borrring solution
From Cauchy Schwarz's inequality, we get
( 2 1 ( i = 1 ∑ n x i ) ) 2 = ( i = 1 ∑ n i x i − i 2 ) 2 ≤ ( i = 1 ∑ n i 2 ) ( i = 1 ∑ n x i − i 2 )
4 1 ( i = 1 ∑ n x i ) 2 ≤ ( 6 n ( n + 1 ) ( 2 n + 1 ) ) ( i = 1 ∑ n x i ) − ( 6 n ( n + 1 ) ( 2 n + 1 ) ) 2
Multiply both sides by 36 we get
9 ( i = 1 ∑ n x i ) 2 ≤ 6 ( n ( n + 1 ) ( 2 n + 1 ) ) ( i = 1 ∑ n x i ) − ( n ( n + 1 ) ( 2 n + 1 ) ) 2
9 ( i = 1 ∑ n x i ) 2 − 6 ( n ( n + 1 ) ( 2 n + 1 ) ) ( i = 1 ∑ n x i ) + ( n ( n + 1 ) ( 2 n + 1 ) ) 2 ≤ 0
( 3 ( i = 1 ∑ n x i ) − n ( n + 1 ) ( 2 n + 1 ) ) 2 ≤ 0
The only possible case is 3 ( i = 1 ∑ n x i ) = n ( n + 1 ) ( 2 n + 1 )
Therefore, i = 1 ∑ n x i = 3 n ( n + 1 ) ( n + 2 )
Take n = 5 , n = 4 then subtract, and we get x 5 = 1 1 0 − 6 0 = 5 0 ~~~
Problem Loading...
Note Loading...
Set Loading...
The equation can be rewritten as ∑ i = 1 n i x i − i 2 = 2 1 ∑ i = 1 n x i . Note that if we substitute x i = 2 i 2 , then the equation becomes ∑ i = 1 n i 2 i 2 − i 2 = 2 1 ∑ i = 1 n 2 i 2 . Both the LHS and RHS simplify to ∑ i = 1 n i 2 . Therefore, x i = 2 i 2 satisfies the equation, so x 5 = 2 ( 5 ) 2 = 5 0 .