No, I'm afraid it isn't 3

Algebra Level 2

If a + b = 1 a+b=1 and a 2 + b 2 = 2 a^{2}+b^{2}=2 , what is a 3 + b 3 a^{3}+b^{3} ? If your answer is x y \frac{x}{y} , where x x and y y are coprime positive integers, find x + y x+y .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Shreyas Shastry
Feb 28, 2014

a+b=1,a^2+b^2=2

(a+b)^2=a^2+b^2+2ab

1=2+2ab

ab=-1/2

a^3+b^3=(a+b)(a^2+b^2-ab)

by substituting the values we get a^3+b^3= 5/2

so 5+2=7

yeah, i did the same way with you, simple way and easy one,, :D

Yodji Fufuri - 7 years, 2 months ago
Finn Hulse
Feb 28, 2014

Let's start by multiplying both equations by each other. ( a + b ) ( a 2 + b 2 ) (a+b)(a^{2}+b^{2}) expands to a 3 + a b 2 + b a 2 + b 3 a^{3}+ab^{2}+ba^{2}+b^{3} . When we factor the middle chunk of the expression ( a b 2 + b a 2 ab^{2}+ba^{2} ) we get a b ( a + b ) ab(a+b) . Because we already know that a + b = 1 a+b=1 , we see that all that we don't know is the a b ab . To find this, expand ( a + b ) 2 (a+b)^{2} , and get a 2 + 2 a b + b 2 a^{2}+2ab+b^{2} . We already know a 2 + b 2 = 2 a^{2}+b^{2}=2 , and subtracting that from the whole equation, we find that 2 a b = 1 2ab=-1 . Therefore, a b = 1 2 ab=\frac{-1}{2} . Plugging this in for the original expansion of ( a + b ) ( a 2 + b 2 ) (a+b)(a^{2}+b^{2}) gets a 3 1 2 + b 3 = 2 a^{3}-\frac{1}{2}+b^{3}=2 . Solving, we see that a 3 + b 3 = 5 2 a^{3}+b^{3}=\frac{5}{2} . Adding 5 + 2 5+2 gets the answer 7 \boxed{7} . That is a heck lot of LaTeX.

Prasun Biswas
Mar 16, 2014

First of all we should know the following formulas to solve this : ( x + y ) 3 = x 3 + y 3 + 3 x y ( x + y ) and x 2 + y 2 = ( x + y ) 2 2 x y = ( x y ) 2 + 2 x y (x+y)^3=x^3+y^3+3xy(x+y)\quad \text{and} \quad x^2+y^2=(x+y)^2-2xy=(x-y)^2+2xy

Given that, a + b = 1... ( i ) a 2 + b 2 = 2.... ( i i ) a+b=1...(i)\quad a^2+b^2=2....(ii)

From (ii), we get the following ----

a 2 + b 2 = 2 a^2+b^2=2

( a + b ) 2 2 a b = 2 \implies (a+b)^2-2ab=2

1 2 2 a b = 2 \implies 1^2-2ab=2 [from (i)]

2 a b = ( 1 ) a b = ( 1 2 ) \implies 2ab=(-1) \implies ab=\boxed{(\frac{-1}{2})}

Now, we cube the eq. (i) and putting the value of a b ab , we get---

( a + b ) 3 = 1 3 (a+b)^3=1^3

a 3 + b 3 + 3 a b ( a + b ) = 1 \implies a^3+b^3+3ab(a+b)=1

a 3 + b 3 + 3 a b = 1 \implies a^3+b^3+3ab=1 [from (i)]

a 3 + b 3 + 3 ( 1 2 ) = 1 \implies a^3+b^3+3(\frac{-1}{2})=1 [since we found that a b = ( 1 2 ) ab=(\frac{-1}{2}) ]

a 3 + b 3 3 2 = 1 \implies a^3+b^3-\frac{3}{2}=1

a 3 + b 3 = 1 + 3 2 \implies a^3+b^3=1+\frac{3}{2}

a 3 + b 3 = 5 2 \implies a^3+b^3=\boxed{\frac{5}{2}}

So, now a 3 + b 3 a^3+b^3 is in the form of x y \frac{x}{y} with x , y x,y as coprime integers i.e., x = 5 , y = 2 x=5,y=2

Then, the reqd. sum = x + y = 5 + 2 = 7 =x+y=5+2=\boxed{7}

Arijit Banerjee
Feb 28, 2014

we can write a^2 + b^2 as (a+b)^2 -2ab and then calculate ab = -1/2. Then we can write a^3 +b^3 as (a+b)(a^2+b^2 - ab) and then on putting the values we get 5/2 so answer is 7!

Jeet Dubey
Feb 28, 2014

first we have to find out ab ..... ab= -1/2

then we have to put it in the formula of a^3+b^3 which is equal to 5/2......therefore 5+2=7

Exactly!

Finn Hulse - 7 years, 3 months ago

Check out my solution Finn! :D

Victor Loh - 7 years ago
James Wilson
Dec 10, 2017

a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = ( 1 ) ( a 2 a b + b 2 ) = a 2 + b 2 a b = 3 2 ( a 2 + b 2 ) 1 2 ( a 2 + b 2 ) a b = 3 2 ( a 2 + b 2 ) 1 2 ( a 2 + 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2)=(1)(a^2-ab+b^2)=a^2+b^2-ab=\frac{3}{2}(a^2+b^2)-\frac{1}{2}(a^2+b^2)-ab=\frac{3}{2}(a^2+b^2)-\frac{1}{2}(a^2+2ab+b^2) = 3 2 ( a 2 + b 2 ) 1 2 ( a + b ) 2 = 3 2 ( 2 ) 1 2 ( 1 ) 2 = 3 1 2 = 5 2 =\frac{3}{2}(a^2+b^2)-\frac{1}{2}(a+b)^2=\frac{3}{2}(2)-\frac{1}{2}(1)^2=3-\frac{1}{2}=\frac{5}{2}

Victor Loh
May 18, 2014

a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-ab)

Since a + b = 1 a+b=1 and a 2 + b 2 = 2 a^{2}+b^{2}=2 , a 3 + b 3 = 2 a b . a^{3}+b^{3}=2-ab.

Now we need to find a b ab .

Note that ( a + b ) 2 = a 2 + b 2 + 2 a b = 2 + 2 a b = 1 a b = 1 2 (a+b)^{2}=a^{2}+b^{2}+2ab=2+2ab=1 \implies ab=-\frac{1}{2} , and the desired fraction is 2 ( 1 2 ) = 5 2 2-(-\frac{1}{2})=\frac{5}{2} , which yields the answer 7 \boxed{7} .

Moshiur Mission
Mar 30, 2014

a+b = 1, a2+b2=2 so ab = -1/2, now a3+b3 = (a+b)(a2-ab+b2) = 1(2+1/2) = 5/2 = x/y so x+y = 5+2=7

Aditya Messi
Mar 23, 2014

a+b=1, a^2+b^2 =2 Now (a+b)^2=1^2=1 = a^2 + b^2 +2ab=1 = 2+2ab=1 =2ab= -1 ab= -1/2 a^3 + b^3 = (a+b)3- 3ab(a+b) a^3 +b^3 = 1+3/2 a^3 + b^3 = 5/2 x+y=7

Rekha Rani
Mar 16, 2014

a+b=1 squaring on both sides.
(a+b)^2=1^2. a^2+b^2+2ab=1 2+2ab=1==>2ab=1- 2==>>ab= -1/2 (given a^2+b^2 =2). a^3+b^3=(a+b)(a^2+b^2-ab)
=(1)(2-(-1/2)) =2+1/2
= 5/2
answer=5+2=7



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...