Suppose α is one of the roots of x 2 + x − 4 1 . Determine
α 5 + α 4 − α 3 − α 2 α 3 − 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good solution..
I didn't got it... how ( α 2 − 1 ) ( α 3 + α 2 ) ( α − 1 ) ( α 2 + α + 1 ) = ( α + 1 ) 2 α 2 α 2 + α + 1
Log in to reply
Factorize the denominator as alpha not equal to zero, alpha-1 will get cancelled therefore you get. :)
Log in to reply
Thank you soo much... i just got it right now.. ^_^
( a 2 − 1 ) ( a 3 + a 2 ) ( a − 1 ) ( a 2 + a + 1 ) = ( a 2 − 1 2 ) { a 2 ( a + 1 ) } ( a − 1 ) ( a 2 + a + 1 ) ( a − 1 ) ( a + 1 ) a 2 ( a + 1 ) ( a − 1 ) ( a 2 + a + 1 ) ⟹ a 2 ( a + 1 ) 2 ( a 2 + a + 1 )
I did in the same way :)
Nice one..
As α is a root of x 2 + x − 4 1 ⇒ α 2 + α − 4 1 = 0 ⇒ α 2 + α = 4 1
α 5 + α 4 − α 3 − α 2 α 3 − 1 = α 3 ( α 2 + α ) − α ( α 2 + α ) ( α − 1 ) ( α 2 + α + 1 ) = α 3 ( 4 1 ) − α ( 4 1 ) ( α − 1 ) ( 4 1 + 1 )
= 4 1 α ( α 2 − 1 ) 4 5 ( α − 1 ) = α ( α − 1 ) ( α + 1 ) 5 ( α − 1 ) = α 2 + α 5 = 4 1 5 = 2 0
x 2 + x = 4 1 ∴ α 2 + α = 4 1 . . . . . . ( 1 ) α 5 − α 3 + α 4 − α 2 α 3 − 1 ∴ α 3 ( α 2 − 1 ) + α 2 ( α 2 − 1 ) ( α − 1 ) ( α 2 + α + 1 ) α = 1 ∴ Dividing numerator and denominator by ( α − 1 ) a n d u s i n g ( 1 ) α 3 ( α + 1 ) + α 2 ( α + 1 ) 4 1 + 1 ( α 2 + α ) ( α 2 + α ) 4 5 F r o m ( 1 ) ( 4 1 ) ( 4 1 ) 4 5 = 2 0
x 5 + x 4 − x 3 − x 2 x 3 − 1 = x 2 ( x 3 + x 2 − x − 1 ) ( x − 1 ) ( x 2 + x + 1 ) (using the factor theorem)... = x 2 ( x − 1 ) ( x + 1 ) 2 ( x − 1 ) ( x 2 + x + 1 ) = x 2 ( x 2 + 2 x + 1 ) x 2 + x + 1 ( 1 ) Now x 2 + x − 4 1 = 0 ⇒ x 2 + x + 1 = 4 5 , x 2 = 4 1 − x a n d x 2 + 2 x + 1 = 4 5 + x Substituting these into equation (1): ( 4 1 − x ) ( 4 5 + x ) 5 / 4 = 1 6 5 − x − x 2 5 / 4 x 2 + x − 4 1 = 0 ⇒ 1 6 5 − x − x 2 = 1 6 1 ∴ 1 6 5 − x − x 2 5 / 4 = 1 / 1 6 5 / 4 = 2 0
Feels like a circuitous route.
Problem Loading...
Note Loading...
Set Loading...
α 5 − α 3 + α 4 − α 2 α 3 − 1
α 3 ( α 2 − 1 ) + α 2 ( α 2 − 1 ) α 3 − 1
( α 2 − 1 ) ( α 3 + α 2 ) ( α − 1 ) ( α 2 + α + 1 )
( α + 1 ) 2 α 2 α 2 + α + 1
Now,
x 2 + x − 4 1 = 0
⟹ α 2 + α + 1 = 4 5
x 2 + x − 4 1 = 0
⟹ α ( α + 1 ) = 4 1
Thus ,
( α + 1 ) 2 α 2 α 2 + α + 1
= ( 4 1 ) 2 4 5
= 2 0