No longer 2014

Level pending

Let P ( x ) P(x) be a polynomial of degree 2010 2010 .

Suppose

P ( n ) = n 1 + n P(n)=\frac{n}{1+n}

for all

n = 0 , 1 , 2 , . . . , 2010. n=0,1,2,...,2010.

Find P ( 2012 ) . P(2012).


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Victor Loh
Jan 6, 2014

Let Q ( n ) = ( 1 + n ) P ( n ) n Q(n) = (1+n)P(n)-n . Then Q ( n ) Q(n) has roots 0 , 1 , 2 , . . . , 2010. 0,1,2,...,2010.

Note that Q ( n ) Q(n) has a degree of 2011 2011 . Hence Q ( n ) = k n ( n 1 ) ( n 2 ) ( n 3 ) . . . ( n 2010 ) . Q(n) = kn(n-1)(n-2)(n-3)...(n-2010).

We only need to determine k k . Note that Q ( 1 ) = 1 Q(-1)=-1 , so k ( 1 ) ( 2 ) ( 3 ) . . . ( 2011 ) = 1 k(-1)(-2)(-3)...(-2011)=1 .

( 2011 ! ) k = 1 k = 1 2011 ! -(2011!)k=1 \implies k=-\frac{1}{2011!} .

Hence Q ( 2012 ) = 1 2011 ! ( 2012 ) ( 2011 ) . . . ( 2 ) = 2012 = 2013 P ( 2012 ) 2012 Q(2012)=-\frac{1}{2011!}(2012)(2011)...(2)=-2012=2013P(2012)-2012 .

Then P ( 2012 ) = 0 P(2012)=\boxed{0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...