No more hockey stick

Calculus Level pending

If n = 0 j = 0 n k = j n ( n k ) ( k j ) ( n j ) 2 j 8 n ( 2 n + 1 ) 3 \sum_{n=0}^{\infty}\sum_{j=0}^n\sum_{k=j}^n{n\choose k}{k\choose j}{n\choose j}\frac{2^j}{8^n(2n+1)^3} can be expressed as π a b + ln c ( c ) d \displaystyle \frac{\pi^a}{b}+\frac{\ln^c(c)}{d} where a , b , c , d a,b,c,d are positive integers, a , c a,c are primes numbers, then find a + b + c + d a+b+c+d .


This is an original problem and also it is shared proposed problem in Romanian Mathematical Magazine to prove the closed form .


The answer is 57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Jun 13, 2020

I'm sharing my solution for proposed problem

Solution by proposer

Recall the ordinary generating function for binomial theorem, ie B ( j ) = k = 0 n ( n k ) x k = ( 1 + x ) n \displaystyle B(j)= \sum_{k=0}^{n}{n\choose k}x^k =(1+x)^n . Now we perform jth times derivatives w.r.t x and multiply throughly by 1 j ! \frac{1}{j!} we yields at x = 1 x=1 1 j ! d j d x j B ( j ) = k = 0 ( n k ) ( k ) j x k j = ( n ) j ( 1 + x ) n j k = j n ( n k ) ( k j ) = 2 n j ( n j ) \frac{1}{j!}\frac{d^j}{dx^j}B(j) = \sum_{k=0}^{\infty}{n\choose k}(k)_jx^{k-j}= (n)_j (1+x)^{n-j} \Rightarrow \sum_{k=j}^n{n\choose k}{k\choose j} = 2^{n-j} {n\choose j} where ( n ) j (n)_j is pochhammer polynomial and hence we have n = 0 j = 0 n ( n j ) d j d x j 2 j B ( J ) j ! 8 n ( 2 n + 1 ) 3 = n = 0 j = 0 n 1 4 n ( n j ) 2 1 ( 2 n + 1 ) 3 = n = 0 1 4 n ( 2 n + 1 ) 3 ( 2 n n ) \sum_{n=0}^{\infty}\sum_{j=0}^{n}{ n\choose j} \frac{d^j}{dx^j}\frac{2^j B(J)}{j!8^ n(2n+1)^3}=\sum_{n=0}^{\infty}\sum_{j=0}^{n}\frac{1}{4^n}{ n\choose j}^2\frac{1}{(2n+1)^3} =\sum_{n=0}^{\infty}\frac{1}{4^n(2n+1)^3}{2n\choose n} since by Vandermonde Convolution k = 0 r ( m k ) ( n n k ) = ( m + n r ) \displaystyle \sum_{k=0}^{r}{m\choose k}{ n\choose n-k}={m+n\choose r} set m = r = n m= r=n we have k = 0 r ( r k ) 2 = ( 2 r r ) \displaystyle \sum_{k=0}^{r}{r\choose k}^2={2r\choose r} (case appears in our main problem) and hence are left to evaluate the latter sum. We recall the generating function for central binomial coefficients as k = 0 ( 2 n n ) x 2 k = 1 1 4 x 2 \displaystyle \sum_{k=0}^{\infty}{2n\choose n}x^{2k}=\frac{1}{\sqrt{1-4x^2}} so k = 0 ( 2 n n ) x 2 k 4 n = 1 1 x 2 \displaystyle \sum_{k=0}^{\infty}{2n\choose n}\frac{x^{2k}}{4^n}=\frac{1}{\sqrt{1-x^2}} and hence on integrating we have n = 0 x 2 n 4 n ( 2 n + 1 ) ( 2 n n ) = sin 1 x x n = 0 1 4 n ( 2 n + 1 ) 0 1 x 2 n ln x d x = 0 1 sin 1 x ln x x d x \sum_{n=0}^{\infty}\frac{x^{2n}}{4^n(2n+1)}{2n\choose n}=\frac{\sin^{-1} x}{x}\Rightarrow \sum_{n=0}^{\infty}\frac{1}{4^n(2n+1)}\int_0^1 x^{2n} \ln x dx=\int_0^1\frac{\sin^{-1} x \ln x}{x}dx = 0 + 1 2 0 1 ln 2 x 1 x 2 = 1 2 0 π 2 ln 2 ( sin x ) d x = π 16 d 2 d m 2 ( 1 4 m ( 2 m m ) ) m = 0 =-0+\frac{1}{2}\int_{0}^1\frac{\ln^2 x}{\sqrt{1-x^2}}=\frac{1}{2}\int_0^{\frac{\pi}{2}}\ln^2(\sin x ) dx =\frac{\pi}{16}\frac{d^2}{dm^2}\left(\frac{1}{4^m}{2m\choose m}\right)_{m=0} = π 8 d d m ( 1 4 m ( 2 m m ) ( ψ 0 ( 2 m + 1 ) ψ 0 ( m + 1 ) ln 2 ) ) m = 0 = π 16 1 4 m ( 2 m m ) =\frac{\pi}{8}\frac{d}{dm}\left( \frac{1}{4^m}{2m\choose m}\left(\psi^0(2m+1)-\psi^0(m+1)-\ln 2\right)\right)_{m=0}=\frac{\pi}{16}\frac{1}{4^m}{2m\choose m} ( 4 ψ 0 ( m + 1 ) + 4 ψ 0 ( 2 m + 1 ) 2 ψ 1 ( m + 1 ) + 4 ψ 1 ( 2 m + 1 ) ) + 4 ψ 0 ( m + 1 ) ( ln 4 2 ψ 0 ( m + 1 ) ) 8 ln 2 ψ 0 ( 2 m + 1 ) + ln 2 4 ) m = 0 \displaystyle \left(4\psi^0(m+1)+4\psi^0(2m+1)-2\psi^1(m+1)+4\psi^1(2m+1)\right)+4\psi^0(m+1)(\ln 4 -2\psi^0(m+1))-8\ln 2\psi^0(2m+1)+\ln^2 4)_{m=0} and hence π 16 ( 8 ψ ( 1 ) + 2 ψ 1 ( 1 ) + 4 ψ 1 ( 1 ) ( ln 4 2 ψ ( 1 ) ) 4 ln 4 ψ ( 1 ) + ln 2 4 ) = π 16 ( π 2 3 + ln 2 4 ) \frac{\pi}{16}(8\psi(1)+2\psi^1(1)+4\psi^1(1)(\ln 4-2\psi(1))-4\ln 4\psi (1)+\ln^2 4)=\frac{\pi}{16}\left(\frac{\pi^2}{3}+\ln^2 4\right) = π 3 48 + ln 2 ( 2 ) 4 = π 4 ( ζ ( 2 ) 2 + ln 2 2 ) \displaystyle=\frac{\pi^3}{48}+\frac{\ln^2(2)}{4}= \displaystyle \frac{\pi}{4}\left(\frac{\zeta(2)}{2}+\ln^2 2\right) which completes the proof.

How do you solve the integral of ln^2(sinx)?

Matteo Bianchi - 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...