No cool name

Level 1

if a b = 5 \dfrac{a}{b}=5 then whats the minimum value of a + b a+b ?

you can only use positive integers and the divisor cannot be 1 1


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Uttkarsh Kohli
Jul 23, 2015

lets assume a=10, b=2 so you get 10/2=5 therefore a+b=12

[as 10,2 are the smallest numbers to get 5 if we divide them]

UPVOTE IF SATISFIED

5 1 = 5 \frac 51 = 5 , also 5 1 \frac {-5}{-1} = 5. The answer to this question is -\infty

Vishnu Bhagyanath - 5 years, 10 months ago

Log in to reply

you are right i have changed the question

uttkarsh kohli - 5 years, 10 months ago
T Sidharth
Jul 23, 2015

a = 5 b ( f r o m t h e g i v e n e q u a t i o n ) W e h a v e t o f i n d V a l u e o f a + b = > a + b = 6 b R i g h t s i n c e t h e d i v i s o r 1 T o g e t t h e m i n i m a l v a l u e w e c o n s i d e r b = 2 = > a + b = 12 { t h e l e a s t v a l u e } a=5b(from\quad the\quad given\quad equation)\\ \\ We\quad have\quad to\quad find\quad Value\quad of\quad a\quad +\quad b\\ \\ =>\quad a+b\quad =\quad 6b\\ Right\quad since\quad the\quad divisor\quad \neq \quad 1\\ \\ To\quad get\quad the\quad minimal\quad value\quad we\quad consider\\ b\quad =\quad 2\\ =>\quad a\quad +\quad b\quad =\quad 12\{ the\quad least\quad value\} \\ \\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...