No Need for Calculator Here

Number Theory Level pending

Let r r be the remainder of:

1 + 2 2 + 3 3 + 4 4 + 5 5 + 6 6 + 7 7 + 8 8 + 9 9 + 1 0 10 1+2^2+3^3+4^4+5^5+6^6+7^7+8^8+9^9+10^{10}

when divided by 3 3 , and s s the sum of the last digits of each of the terms of the sum above. What is r + s r+s ?

42 49 43 None of the above 47

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 31, 2016

Let the sum be S = k = 1 10 k k S = \displaystyle \sum_{k=1}^{10} k^k . We need to find k k mod 3 k^k \text{ mod }3 and k k mod 10 k^k \text{ mod } 10 in our calculations. We can apply Euler's theorem , if k k and 3 are coprime integers or gcd ( k , 3 ) = 1 \gcd(k,3)=1 . Then, we have k k k k mod ϕ ( 3 ) k k mod 2 k^k \equiv k^{k \text{ mod } {\color{#3D99F6}\phi(3)}} \equiv k^{k \text{ mod } {\color{#3D99F6}2}} , where ϕ ( 3 ) = 2 \phi(3) = 2 is the Euler's totient function of 3. Similarly for 10 and ϕ ( 10 ) = 4 \phi(10) = 4 . Therefore, we have:

S 1 + 2 2 mod 2 + 3 3 + 4 4 mod 2 + 5 5 mod 2 + 6 6 + 7 7 mod 2 + 8 8 mod 2 + 9 9 + 1 0 10 mod 2 (mod 3) 3 3 3 , 3 6 6 , 3 9 9 1 + 2 0 + 0 + 4 0 + 5 1 + 0 + 7 1 + 8 0 + 0 + 1 0 0 (mod 3) 1 + 1 + 0 + 1 + 2 + 0 + 1 + 1 + 0 + 1 (mod 3) 8 e q u i v 2 (mod 3) \begin{aligned} S & \equiv 1 + 2^{2 \text{ mod } 2} + {\color{#D61F06}3^3} + 4^{4 \text{ mod } 2} + 5^{5 \text{ mod } 2} + {\color{#D61F06}6^6} + 7^{7 \text{ mod } 2} + 8^{8 \text{ mod } 2} + {\color{#D61F06}9^9} +10^{10 \text{ mod } 2} \text{ (mod 3)} & \small {\color{#D61F06}3|3^3, \ 3|6^6, \ 3|9^9} \\ & \equiv 1 + 2^0 + {\color{#D61F06}0} + 4^{0} + 5^{1} + {\color{#D61F06}0} + 7^{1} + 8^{0} + {\color{#D61F06}0} +10^{0} \text{ (mod 3)} \\ & \equiv 1 + 1 + {\color{#D61F06}0} + 1 + 2 + {\color{#D61F06}0} + 1 + 1 + {\color{#D61F06}0} +1 \text{ (mod 3)} \\ & \equiv 8 equiv 2 \text{ (mod 3)} \end{aligned}

r = 2 \implies r = 2

S 1 + 2 2 + 3 3 mod 4 + 4 4 + 5 5 + 6 6 + 7 7 mod 4 + 8 8 + 9 9 mod 4 + 1 0 10 (mod 10) 10 1 0 10 1 + 4 + 27 + 1 6 2 + 5 5 + 6 6 + 7 3 + 1 6 6 + 9 1 + 0 (mod 10) See Note 1 + 4 + 27 + 6 + 5 + 6 + 49 7 + 6 + 9 + 0 (mod 10) s = 1 + 4 + 7 + 6 + 5 + 6 + 3 + 6 + 9 + 0 = 47 \begin{aligned} S & \equiv 1 + 2^2 + 3^{3 \text{ mod } 4} + 4^4 + 5^5 + 6^6 + 7^{7 \text{ mod } 4} + 8^8 + 9^{9 \text{ mod } 4} +{\color{#D61F06}10^ {10}} \text{ (mod 10)} & \small {\color{#D61F06}10|10^{10}} \\ & \equiv 1 + 4 + 27 + {\color{#3D99F6}16^2} + {\color{#3D99F6}5^5} + {\color{#3D99F6}6^6} + 7^{3} + {\color{#3D99F6}16^6} + 9^1 + {\color{#D61F06}0} \text{ (mod 10)} & \small {\color{#3D99F6}\text{See Note}} \\ & \equiv 1 + 4 + 27 + {\color{#3D99F6}6} + {\color{#3D99F6}5} + {\color{#3D99F6}6} + 49\cdot 7 + {\color{#3D99F6}6} + 9 + 0 \text{ (mod 10)} \\ \implies s & = 1 + 4 + 7 + 6 + 5 + 6 + 3 + 6 + 9 + 0 \\ & = 47 \end{aligned}

r + s = 2 + 47 = 49 \implies r+s = 2+47 = \boxed{49}


Note: Powers of a natural number ends with 6 end with 6. Powers of a natural number ends with 5 end with 5.

Thank you :) .

Hana Wehbi - 4 years, 7 months ago
Hana Wehbi
Oct 31, 2016

1 + 2 2 + 3 3 + 4 4 + 5 5 + 6 6 + 7 7 + 8 8 + 9 9 + 1 0 10 = 1+2^2+3^3+4^4+5^5+6^6+7^7+8^8+9^9+10^{10}=

1 + 1 + 0 + 1 + 2 + 0 + 1 + 1 + 0 + 1 = 8 = 2 ( m o d 3 ) = r 1+1+0+1+2+0+1+1+0+1 = 8 = 2(mod 3)= r ;

s = 1 + 4 + 7 + 6 + 5 + 6 + 3 + 6 + 9 + 0 = 47 s= 1+4+7+6+5+6+3+6+9+0 = 47 ;

thus: 2 + 47 = 49 2+47=49

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...