No Need To Get A Calculator!

Algebra Level 5

Find the value of -

511 24 2048 + 381 4 37892 21120 + 5 262144 196608 + 61440 6 5 4 3 \large \sqrt[3]{511-24\sqrt[4]{2048+381-4\sqrt[5]{37892-21120+5\sqrt[6]{262144-196608+61440\cdots}}}}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vatsalya Tandon
Feb 13, 2016

Let f ( x ) f(x) be x 1 x-1

f ( x ) = ( x 1 ) 3 3 f(x) = \sqrt[3]{(x-1)^{3}}

f ( x ) = x 3 1 3 x ( x 1 ) 3 f(x) = \sqrt[3]{x^3 - 1 - 3x(x-1)}

f ( x ) = x 3 1 3 x ( x 1 ) 4 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{(x-1)^4}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 4 x + 1 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 - 4x + 1}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 4 x + 4 3 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 - 4x +4 - 3}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 ( x 1 ) ) 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4(x-1))}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 ( x 1 ) 5 5 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4\sqrt[5]{(x-1)^5}}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 x 5 5 x 4 + 10 x 3 10 x 2 + 5 x 1 5 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4\sqrt[5]{x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1}}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 x 5 5 x 4 + 10 x 3 10 x 2 + 4 + 5 x 5 5 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4\sqrt[5]{x^5 - 5x^4 + 10x^3 - 10x^2 + 4+ 5x - 5}}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 x 5 5 x 4 + 10 x 3 10 x 2 + 4 + 5 ( x 1 ) 6 6 5 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4\sqrt[5]{x^5 - 5x^4 + 10x^3 - 10x^2 + 4+ 5\sqrt[6]{(x-1)^6}}}}

f ( x ) = x 3 1 3 x x 4 4 x 3 + 6 x 2 3 4 x 5 5 x 4 + 10 x 3 10 x 2 + 4 + 5 x 6 6 x 5 + 15 x 4 . . . 6 5 4 3 f(x) = \sqrt[3]{x^3 - 1 - 3x\sqrt[4]{x^4 - 4x^3 + 6x^2 -3 -4\sqrt[5]{x^5 - 5x^4 + 10x^3 - 10x^2 + 4+ 5\sqrt[6]{x^6 - 6x^5 + 15x^4 ... }}}}

Plugging in x = 8 x=8 , we get-

f ( 8 ) = 512 1 24 4096 2048 + 384 3 4 3276 8 5 20480 + 5120 640 + 4 + 5 262144 196608 + 61440... 6 5 4 3 f(8) = \sqrt[3]{512 - 1 - 24\sqrt[4]{4096 - 2048 + 384 -3 -4\sqrt[5]{32768^5 - 20480 + 5120 - 640 + 4+ 5\sqrt[6]{262144 - 196608 + 61440 ... }}}}

f ( 8 ) = 511 24 2048 + 381 4 37892 21120 + 5 262144 196608 + 61440... 6 5 4 3 f(8) = \sqrt[3]{511 - 24\sqrt[4]{2048 + 381 -4\sqrt[5]{37892 - 21120 + 5\sqrt[6]{262144 - 196608 + 61440 ... }}}}

f ( 8 ) = 8 1 \Rightarrow f(8)= 8-1

7 \boxed{7}

Could you please increase the font? The radicals cannot be read. Nevertheless, Nice solution to a good question. Upvoted!

Somyaneel Sinha - 5 years, 3 months ago

Log in to reply

Thank You so much! Support of people like you makes me post problems and there solutions :)

Vatsalya Tandon - 5 years, 3 months ago
Prakhar Dwivedi
Feb 21, 2016

Good question but there is a trick to bypass the algorithm. One can guess the answer easily as 7 is the only whole no. cube root possible after subtracting multiples of 24 from 511 ;)

Yes. That was my approach. Answer< 51 1 1 3 . 8 3 = 512. S o a n s w e r = 7. 511^{\frac 1 3}. ~~8^3=512.~~So~answer=7.

Niranjan Khanderia - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...