No number theory only

Algebra Level 5

Find the number of real solutions to the system of equations

{ x 3 3 x = y y 3 3 y = z z 3 3 z = x \begin{cases} { x }^{ 3 }- 3x = y \\ { y }^{ 3 }- 3y = z \\ { z }^{ 3 }- 3z = x \end{cases}


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Galanis
Mar 6, 2016

Let f ( ω ) = ω 3 3 ω ( 1 ) f(ω) = ω^3-3ω \quad (1) then { f ( x ) = x 3 3 x = y ( 2 ) f ( y ) = y 3 3 y = z ( 3 ) f ( z ) = z 3 3 z = x ( 4 ) \begin{cases}f(x)=x^3-3x=y \quad(2) \\ f(y)=y^3-3y=z \quad(3) \\ f(z)=z^3-3z=x \quad(4) \end{cases} and for x ( , 2 ] [ 2 , + ) x \in (-\infty, -2]\cup [2,+\infty) \quad f ( x ) f(x) is increasing thus WLOG: x y z ( 5 ) x \le y \le z \quad (5) f ( x ) f ( y ) f ( z ) ( 2 ) ( 3 ) ( 4 ) y z x ( 6 ) \Rightarrow f(x) \le f(y) \le f(z) \\ \stackrel{(2)(3)(4)}{\Longrightarrow} y \le z \le x \quad (6) Hence considering ( 5 ) (5) and ( 6 ) (6) we conclude that x = y = z x=y=z which yields that x 3 3 x = x x ( x 2 ) ( x + 2 ) = 0 x = y = z = { 2 , 0 , 2 } x^3-3x=x \\ \Rightarrow x(x-2)(x+2)=0 \\ \Rightarrow x = y = z = \{-2, 0, 2\} but 0 ( , 2 ] [ 2 , + ) 0 \notin (-\infty, -2]\cup [2,+\infty) therefore only 2 -2 and 2 2 are solutions.

Now we are left to see if there is any solution for x ( 2 , 2 ) x \in (-2, 2) .

We can express x x as x = 2 cos w ( 7 ) x = 2 \cos w \quad (7) for w ( 0 , π ) w \in (0, \pi)

Using the identity cos 3 θ = 4 c o s 3 θ 3 cos θ ( ) \boxed{\cos3\theta = 4cos^3\theta - 3\cos\theta} (*) (Check Chebychev Polynomials ) we have the following results:

( 2 ) ( 7 ) y = ( 2 cos w ) 3 3 ( 3 cos w ) y = 2 ( 4 cos 3 w 3 cos w ) ( ) : θ w y = 2 cos 3 w ( 8 ) (2) \stackrel{(7)}{\Rightarrow} y = (2\cos w)^3-3(3\cos w) \Rightarrow y = 2(4\cos^3w-3\cos w) \stackrel{(*): \theta \rightarrow w}{\Longrightarrow} y = 2\cos3w\quad (8)

( 3 ) ( 8 ) z = ( 2 cos 3 w ) 3 3 ( 3 cos 3 w ) z = 2 ( 4 cos 3 3 w 3 cos 3 w ) ( ) : θ 3 w z = 2 cos 9 w ( 9 ) (3) \stackrel{(8)}{\Rightarrow} z = (2\cos 3w)^3-3(3\cos 3w) \Rightarrow z = 2(4\cos^33w-3\cos3w) \stackrel{(*): \theta \rightarrow 3w}{\Longrightarrow} z = 2\cos9w \quad (9)

( 4 ) ( 9 ) x = ( 2 cos 9 w ) 3 3 ( 3 cos 9 w ) x = 2 ( 4 cos 3 9 w 3 cos 9 w ) ( ) : θ 9 w x = 2 cos 27 w ( 10 ) (4) \stackrel{(9)}{\Rightarrow} x = (2\cos 9w)^3-3(3\cos 9w) \Rightarrow x = 2(4\cos^39w-3\cos9w) \stackrel{(*): \theta \rightarrow 9w}{\Longrightarrow} x = 2\cos27w \quad (10)

Thus by ( 7 ) (7) and ( 10 ) (10) we got x = 2 cos w = 2 cos 27 w x = 2\cos w = 2\cos 27w cos 27 w = cos w { 27 w = w + 2 k π 27 w = w + 2 k π { w = k π 13 ( 11 ) w = k π 14 ( 12 ) k Z \Rightarrow \cos 27w = \cos w \Rightarrow \begin{cases} 27w = w +2k\pi \\ 27w = -w + 2k\pi \end{cases} \Rightarrow \begin{cases} w =\dfrac{k\pi}{13} \quad(11)\\ w = \dfrac{k\pi}{14} \quad(12) \end{cases} \quad k \in \mathbb{Z} But recall that in ( 7 ) (7) we defined 0 < w < π { ( 11 ) 0 < k < 13 ( 12 ) 0 < k < 14 0 < w < \pi \Rightarrow \begin{cases}(11) \Rightarrow 0 < k < 13 \\ (12) \Rightarrow 0 < k < 14 \end{cases}

To sum up the solutions of x x are { 2 , 2 cos k π 13 ( k = { 1 , 2 , 3 , , 12 } ) , 2 cos k π 14 ( k = { 1 , 2 , 3 , , 13 } ) , 2 } \Big\{-2, \quad 2\cos \frac{k\pi}{13}(k=\{1,2,3,\ldots, 12\}), \quad 2\cos \frac{k\pi}{14}(k=\{1,2,3,\ldots, 13\}), \quad 2 \Big\}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...