Find the number of real solutions to the system of equations
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( ω ) = ω 3 − 3 ω ( 1 ) then ⎩ ⎪ ⎨ ⎪ ⎧ f ( x ) = x 3 − 3 x = y ( 2 ) f ( y ) = y 3 − 3 y = z ( 3 ) f ( z ) = z 3 − 3 z = x ( 4 ) and for x ∈ ( − ∞ , − 2 ] ∪ [ 2 , + ∞ ) f ( x ) is increasing thus WLOG: x ≤ y ≤ z ( 5 ) ⇒ f ( x ) ≤ f ( y ) ≤ f ( z ) ⟹ ( 2 ) ( 3 ) ( 4 ) y ≤ z ≤ x ( 6 ) Hence considering ( 5 ) and ( 6 ) we conclude that x = y = z which yields that x 3 − 3 x = x ⇒ x ( x − 2 ) ( x + 2 ) = 0 ⇒ x = y = z = { − 2 , 0 , 2 } but 0 ∈ / ( − ∞ , − 2 ] ∪ [ 2 , + ∞ ) therefore only − 2 and 2 are solutions.
Now we are left to see if there is any solution for x ∈ ( − 2 , 2 ) .
We can express x as x = 2 cos w ( 7 ) for w ∈ ( 0 , π )
Using the identity cos 3 θ = 4 c o s 3 θ − 3 cos θ ( ∗ ) (Check Chebychev Polynomials ) we have the following results:
( 2 ) ⇒ ( 7 ) y = ( 2 cos w ) 3 − 3 ( 3 cos w ) ⇒ y = 2 ( 4 cos 3 w − 3 cos w ) ⟹ ( ∗ ) : θ → w y = 2 cos 3 w ( 8 )
( 3 ) ⇒ ( 8 ) z = ( 2 cos 3 w ) 3 − 3 ( 3 cos 3 w ) ⇒ z = 2 ( 4 cos 3 3 w − 3 cos 3 w ) ⟹ ( ∗ ) : θ → 3 w z = 2 cos 9 w ( 9 )
( 4 ) ⇒ ( 9 ) x = ( 2 cos 9 w ) 3 − 3 ( 3 cos 9 w ) ⇒ x = 2 ( 4 cos 3 9 w − 3 cos 9 w ) ⟹ ( ∗ ) : θ → 9 w x = 2 cos 2 7 w ( 1 0 )
Thus by ( 7 ) and ( 1 0 ) we got x = 2 cos w = 2 cos 2 7 w ⇒ cos 2 7 w = cos w ⇒ { 2 7 w = w + 2 k π 2 7 w = − w + 2 k π ⇒ ⎩ ⎪ ⎨ ⎪ ⎧ w = 1 3 k π ( 1 1 ) w = 1 4 k π ( 1 2 ) k ∈ Z But recall that in ( 7 ) we defined 0 < w < π ⇒ { ( 1 1 ) ⇒ 0 < k < 1 3 ( 1 2 ) ⇒ 0 < k < 1 4
To sum up the solutions of x are { − 2 , 2 cos 1 3 k π ( k = { 1 , 2 , 3 , … , 1 2 } ) , 2 cos 1 4 k π ( k = { 1 , 2 , 3 , … , 1 3 } ) , 2 }