No-Perfect-Square-Factors Sequence

Algebra Level 4

The sequence below contains terms that doesn't have any perfect square factors (except 1 1 ).

2 , 3 , 5 , 6 , 7 , 10 , 11 , 13 , 14 , 15 , . . . \large 2,3,5,6,7,10,11,13,14,15,...

What is the sum of the square-roots of the terms starting from 2 2 to the largest two-digit term?

Note: The answer should be written to the nearest thousands.


The answer is 398.695.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kaizen Cyrus
Feb 15, 2019

The answer of the problem is equal to ( k = 2 100 k ) x \left(\displaystyle \sum_{k=2}^{100}\sqrt{k}\right)-x , with x x being the sum of the roots of the multiples of perfect square numbers from 2 2 to 100 100 .

Let's list all multiples of perfect square numbers ranging from 2 2 to 100 100 :

4 , 8 , 12 , 16 , 20 , . . . , 100 \color{#D61F06} 4,8,12,16,20,...,100 \implies (multiples of 4 4 )

9 , 18 , 27 , 45 , 54 , . . . , 99 \color{#EC7300} 9,18,27,45,54,...,99 \implies (multiples of 9 9 excluding 36 \color{#D61F06} 36 and 72 \color{#D61F06} 72 since they're already multiples of 4 4 )

25 , 50 , 75 \color{#3D99F6} 25,50,75 \implies (multiples of 25)

49 , 98 \color{#20A900} 49,98 \implies (multiples of 49 49 )

The sum of the roots of the numbers in the list above will be x x . In the subtraction operation mentioned above, the difference will be the sum of the roots of the numbers from 2 2 to 100 100 that doesn't have any perfect square factors which is the answer of the problem.

x = k = 1 25 4 k + k = 1 3 9 k + k = 5 7 9 k + k = 9 11 9 k + k = 1 3 25 k + k = 1 2 49 k x=\color{#D61F06}\displaystyle \sum_{k=1}^{25}\sqrt{4k} \color{#333333}+ \color{#EC7300} \displaystyle\sum_{k=1}^{3}\sqrt{9k} \color{#333333}+ \color{#EC7300} \displaystyle \sum_{k=5}^{7}\sqrt{9k} \color{#333333}+ \color{#EC7300} \displaystyle \sum_{k=9}^{11}\sqrt{9k} \color{#333333}+ \color{#3D99F6} \displaystyle \sum_{k=1}^{3}\sqrt{25k} \color{#333333}+ \color{#20A900} \displaystyle \sum_{k=1}^{2}\sqrt{49k}

Calculating this, it results to x 271.767805 x\approx 271.767805 . As for k = 2 100 k \displaystyle \sum_{k=2}^{100}\sqrt{k} , the sum is 670.462947 \approx 670.462947 .

( k = 2 100 k ) x 670.462947 271.767805 398.695 \left(\displaystyle \sum_{k=2}^{100}\sqrt{k}\right)-x\approx 670.462947-271.767805\approx \boxed{398.695}

The brackets around the summations are unnecessary.

Chew-Seong Cheong - 2 years, 3 months ago
Vedant Saini
Feb 28, 2019

Simple Python code to do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
required_list = []

for num in range(2, 98):
    count = 0

    for div in range(2, num):
        if num % div**2 == 0:
            break
    else:
        required_list.append(num**0.5)

print(sum(required_list))

Chew-Seong Cheong
Feb 25, 2019

Similar solution as @Kaizen Cyrus 's

The sum is the sum of all square-roots from 2 2 to 99 99 subtracts the sum of roots of multiples of 4 4 , 9 9 , 25 25 , and 49 49 , and add back the double count of the multiples of 36 ( = 4 × 9 ) 36 (= 4 \times 9) from 2 2 to 99 99 . In formula we have:

S = k = 2 99 k 2 k = 1 99 4 k 3 k = 1 99 9 k 5 k = 1 99 25 k 7 k = 1 99 49 k + 6 k = 1 99 36 k = k = 2 99 k 2 k = 1 24 k 3 k = 1 11 k 5 k = 1 3 k 7 k = 1 2 k + 6 k = 1 2 k 660.4629471 2 ( 80.63378028 ) 3 ( 25.78490298 ) 5 ( 4.14626437 ) 2.414213562 398.695 \begin{aligned} S & = \sum_{k=2}^{99} \sqrt k - 2 \sum_{k=1}^{\left \lfloor \frac {99}4 \right \rfloor} \sqrt k - 3 \sum_{k=1}^{\left \lfloor \frac {99}9 \right \rfloor} \sqrt k - 5 \sum_{k=1}^{\left \lfloor \frac {99}{25} \right \rfloor} \sqrt k - 7 \sum_{k=1}^{\left \lfloor \frac {99}{49} \right \rfloor} \sqrt k + 6 \sum_{k=1}^{\left \lfloor \frac {99}{36} \right \rfloor} \sqrt k \\ & = \sum_{k=2}^{99} \sqrt k - 2 \sum_{k=1}^{24} \sqrt k - 3 \sum_{k=1}^{11} \sqrt k - 5 \sum_{k=1}^3 \sqrt k - 7 \sum_{k=1}^2 \sqrt k + 6 \sum_{k=1}^2 \sqrt k \\ & \approx 660.4629471 - 2(80.63378028) - 3(25.78490298) - 5(4.14626437) - 2.414213562 \\ & \approx \boxed{398.695} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...