no prime digits

Two real numbers in the unit interval are generated by successively choosing non-prime digits at random. The expectation of the absolute value of the difference between them is of the form A B \frac{A}{B} for coprime positive integers A , B A, B . Find the value of A + B A+B .

There is a possible hint in the picture.


The answer is 245.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Laurent Shorts
May 20, 2016

Let the expectation be E E . Pick two random numbers x = i = 1 x i 1 0 i \displaystyle x=\sum_{i=1}^\infty\frac{x_i}{10^i} and y = i = 1 y i 1 0 i \displaystyle y=\sum_{i=1}^\infty\frac{y_i}{10^i} , with x i , y i { 0 , 1 , 4 , 6 , 8 , 9 } x_i, y_i\in \{0, 1, 4, 6, 8, 9\} .

Case 1: they start with the same digit. The expectation of x y |x-y| is then 1 10 E \frac{1}{10}E .

Case 2: they start with different digits. Suppose WLOG x > y x>y . The expectation is E ( x y x > y ) = i = 1 x i y i 1 0 i = 1 10 E ( x 1 y 1 x 1 > y 1 ) + i = 2 1 1 0 i E ( x i y i ) \displaystyle E(x-y|x>y)=\sum_{i=1}^\infty\frac{x_i-y_i}{10^i}=\frac{1}{10}E(x_1-y_1|x_1>y_1)+\sum_{i=2}^\infty\frac{1}{10^i}E(x_i-y_i)

i , E ( x i y i ) = E ( x i ) E ( y i ) = 0 \forall i, E(x_i-y_i)=E(x_i)-E(y_i)=0 .

E ( x 1 y 1 x 1 > y 1 ) = 1 + 4 + 6 + 8 + 9 + 3 + 5 + 7 + 8 + 2 + 4 + 5 + 2 + 3 + 1 15 = 68 15 E(x_1-y_1|x_1>y_1)=\frac{1+4+6+8+9+3+5+7+8+2+4+5+2+3+1}{15}=\frac{68}{15}

Case 1 has probability 1 6 \frac{1}{6} , case 2 has probability 5 6 \frac{5}{6} .

E = 1 6 1 10 E + 5 6 1 10 68 15 E=\frac{1}{6}·\frac{1}{10}E+\frac{5}{6}·\frac{1}{10}·\frac{68}{15} so 59 60 E = 68 60 3 \frac{59}{60}E=\frac{68}{60·3} and therefore E = 68 177 E=\frac{68}{177} and 68 + 177 = 245 68+177=\boxed{245} ,

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...