Is it distinct 3? (Are the Solutions to this Problem Distinct?)

Algebra Level 4

Let be the number of positive integral solutions ( x , y , z ) (x,y,z) for this equation:

x y z + x y + y z + z x + x + y + z = 1000 xyz+xy+yz+zx+x+y+z=1000 \ \cdot

What is the value of:

25 ( lim α 0 sin ( α ) + sin ( α ) + sin ( α ) + sin ( α 2 ) + α ) ? 25 \cdot \left( \lim_{ \alpha \rightarrow 0} \dfrac{ \sin( \alpha ⋆) + \sin( \alpha) + \sin \left( \dfrac{\alpha}{⋆}\right) + \sin \left( \dfrac{\alpha}{⋆ ^2}\right) + \cdots }{ \alpha } \right) \ ?

Assume that 0 0 is not a positive integer.


For more problems like this, try answering this set .


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Jul 23, 2017

x y z + x y + y z + z x + x + y + z + 1 = ( x + 1 ) ( y + 1 ) ( z + 1 ) = 1001 = 7 ( 11 ) ( 13 ) = 3 ! = 6 xyz + xy + yz + zx + x + y + z + 1 = (x+1)(y+1)(z+1) = 1001 = 7(11)(13) \implies ⋆ = 3! = 6

25 lim α 0 sin ( α ) + sin ( α ) + sin ( α ) + sin ( α 2 ) + α = 25 lim α 0 [ cos ( α ) + cos ( α ) + 1 cos ( α ) + 1 2 cos ( α 2 ) + ] = 25 ( + 1 + 1 + 1 2 + ) = 25 1 1 = 25 2 1 = 25 36 5 = 180 \begin{aligned} \therefore \displaystyle 25 \cdot \lim_{ \alpha \rightarrow 0} \dfrac{ \sin( \alpha ⋆) + \sin( \alpha) + \sin \left( \dfrac{\alpha}{⋆}\right) + \sin \left( \dfrac{\alpha}{⋆ ^2}\right) + \cdots }{ \alpha } \\ &= 25 \cdot \lim_{ \alpha \rightarrow 0} \left[ ⋆\cos( \alpha ⋆) + \cos( \alpha) + \dfrac{1}{⋆}\cos \left( \dfrac{\alpha}{⋆}\right) + \dfrac{1}{⋆ ^2}\cos \left( \dfrac{\alpha}{⋆ ^2}\right) + \cdots \right] \\ &= 25 \cdot \left( ⋆ + 1 + \dfrac{1}{⋆} + \dfrac{1}{⋆ ^2} + \cdots\right) = 25 \cdot \dfrac{⋆}{1 - \dfrac{1}{⋆}} \\ &= 25 \cdot \dfrac{⋆ ^2}{⋆ - 1} \\ &= 25 \cdot \dfrac{36}{5} = \boxed{180} \end{aligned}

FYI It is generally better to focus the problem. IE ask directly for the number of solutions, instead of using this number in a subsequent problem.

Calvin Lin Staff - 3 years, 10 months ago

Log in to reply

Sorry sir, I just want to put some segways in the problem.

Christian Daang - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...