If t satisfies the equation, cos 2 ( 1 0 π ( 2 cos 2 x − 5 cos x + 2 ) ) = sec 2 ( x + t sec 2 x ) , then the solution set is t = a π ( b m ∓ c ) where m is a variable integer, and a , b , c are positive integers.
Find the least possible value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Grt solution.!!!!nice question.
The "coprime positive integers" needs to be clarified. Note that g cd ( a , b ) = 1 .
It should be mentioned that a,b and c are all simultaneously co prime isn't it?
Rather void confusion by asking the least possible blue of a+b+c
Problem Loading...
Note Loading...
Set Loading...
c o s 2 [ 1 0 π ( 2 c o s 2 x − 5 c o s x + 2 ) ] = s e c 2 ( x + t s e c 2 x ) . Clearly LHS ≤ 1 and RHS ≥ 1. So, LHS = RHS = 1 ∴ c o s 2 [ 1 0 π ( 2 c o s 2 x − 5 c o s x + 2 ) ] = 1 o r s i n 2 [ 1 0 π ( 2 c o s 2 x − 5 c o s x + 2 ) ] = 0 ∴ 1 0 π ( 2 c o s 2 x − 5 c o s x + 2 ) = n π F o r s o m e i n t e g e r n . .
( 1 0 n = 2 c o s 2 x − 5 c o s x + 2 ) = 2 { c o s 2 x − 2 5 c o s x + 1 } = 2 [ ( c o s x − 4 5 ) 2 + 1 − 1 6 2 5 ] = 2 ( c o s x − 4 5 ) 2 − 8 9 ∵ c o s x ∈ [ − 1 , 1 ] ( c o s x − 4 5 ) 2 ∈ [ 1 6 1 , 1 6 8 1 ] ∴ 2 ( c o s x − 4 5 ) 2 − 8 9 ∈ [ − 1 , 9 ] , ∴ n = 0 . 2 c o s 2 x − 5 c o s x + 2 = 0 ∴ c o s x = 2 1 ∴ s e c 2 x = 4 o r x = 2 k π ± 3 π F o r s o m e i n t e g e r k . A g a i n R H S = 1 ∴ s e c 2 { x + t s e c 2 x } = 1 ∴ s i n 2 { x + t s e c 2 x } = 0 x + t s e c 2 x = l π F o r s o m e i n t e g e r l . x + 4 t = l π , ∴ 2 k π ± 3 π + 4 t = l π ∴ 4 t = ( l − 2 k ) π ∓ 3 π ( l − 2 k ) c a n b e b e a s s u m e d t o b e a n o t h e r i n t e g e r m . H e n c e , t = 1 2 π ( 3 m ∓ 1 ) . .