No Problemmo #3

Geometry Level 3

If t t satisfies the equation, cos 2 ( π 10 ( 2 cos 2 x 5 cos x + 2 ) ) = sec 2 ( x + t sec 2 x ) \cos^2 \big( \frac { \pi }{ 10 } \left( 2 \cos^2 x-5\cos x+2 \right) \big) ={ \sec }^{ 2 }\left( x+t \sec^2 x \right) , then the solution set is t = π a ( b m c ) t =\frac { \pi }{ a } \left( bm \mp c \right) where m m is a variable integer, and a , b , c a, b, c are positive integers.

Find the least possible value of a + b + c a+b+c .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sibasish Mishra
Feb 6, 2017

c o s 2 [ π 10 ( 2 c o s 2 x 5 c o s x + 2 ) ] = s e c 2 ( x + t s e c 2 x ) { cos }^{ 2 }\left[ \frac { \pi }{ 10 } \left( 2{ cos }^{ 2 }x-5cosx+2 \right) \right] ={ sec }^{ 2 }\left( x+t{ sec }^{ 2 }x \right) . \quad \quad \quad\quad \quad \quad Clearly LHS \le 1 and RHS \ge 1. \quad \quad \quad\quad \quad \quad\quad \quad \quad \quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad\quad\quad \quad So, LHS = RHS = 1 c o s 2 [ π 10 ( 2 c o s 2 x 5 c o s x + 2 ) ] = 1 o r s i n 2 [ π 10 ( 2 c o s 2 x 5 c o s x + 2 ) ] = 0 π 10 ( 2 c o s 2 x 5 c o s x + 2 ) = n π F o r s o m e i n t e g e r n . \therefore { cos }^{ 2 }\left[ \frac { \pi }{ 10 } \left( 2{ cos }^{ 2 }x-5cosx+2 \right) \right] =1\quad or\quad { sin }^{ 2 }\left[ \frac { \pi }{ 10 } \left( 2{ cos }^{ 2 }x-5cosx+2 \right) \right] =0\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \therefore \frac { \pi }{ 10 } \left( 2{ cos }^{ 2 }x-5cosx+2 \right) =n\pi \quad For\quad some\quad integer\quad n.\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ .

( 10 n = 2 c o s 2 x 5 c o s x + 2 ) = 2 { c o s 2 x 5 2 c o s x + 1 } = 2 [ ( c o s x 5 4 ) 2 + 1 25 16 ] = 2 ( c o s x 5 4 ) 2 9 8 c o s x [ 1 , 1 ] ( c o s x 5 4 ) 2 [ 1 16 , 81 16 ] 2 ( c o s x 5 4 ) 2 9 8 [ 1 , 9 ] , n = 0 (10n\quad =\quad 2{ cos }^{ 2 }x-5cosx+2)\\ \quad \quad \quad \quad =2\{ { cos }^{ 2 }x\quad -\frac { 5 }{ 2 } cosx\quad +1\} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad =2[{ (cosx-\frac { 5 }{ 4 } ) }^{ 2 }+1-\frac { 25 }{ 16 } ]\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad =2{ (cosx-\frac { 5 }{ 4 } ) }^{ 2 }-\frac { 9 }{ 8 } \quad \quad \quad \quad \quad \because \quad cosx\quad \in \quad [-1,1]\quad { (cosx-\frac { 5 }{ 4 } ) }^{ 2 }\quad \in \quad [\frac { 1 }{ 16 } ,\frac { 81 }{ 16 } ]\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \therefore \quad 2{ (cosx-\frac { 5 }{ 4 } ) }^{ 2 }-\frac { 9 }{ 8 } \quad \in \quad [-1,9],\quad \therefore \quad n\quad =\quad 0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad . 2 c o s 2 x 5 c o s x + 2 = 0 c o s x = 1 2 s e c 2 x = 4 o r x = 2 k π ± π 3 F o r s o m e i n t e g e r k . A g a i n R H S = 1 s e c 2 { x + t s e c 2 x } = 1 s i n 2 { x + t s e c 2 x } = 0 x + t s e c 2 x = l π F o r s o m e i n t e g e r l . x + 4 t = l π , 2 k π ± π 3 + 4 t = l π 4 t = ( l 2 k ) π π 3 ( l 2 k ) c a n b e b e a s s u m e d t o b e a n o t h e r i n t e g e r m . H e n c e , t = π 12 ( 3 m 1 ) . 2{ cos }^{ 2 }x-5cosx+2\quad =\quad 0\quad \therefore cosx\quad =\quad \frac { 1 }{ 2 } \quad \therefore { sec }^{ 2 }x=4\quad or\quad x=2k\pi \pm \frac { \pi }{ 3 } \quad For\quad some\quad integer\quad k.\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ Again\quad RHS\quad =\quad 1\quad \therefore { sec }^{ 2 }\left\{ x+t{ sec }^{ 2 }x \right\} =1\quad \therefore \quad { sin }^{ 2 }\{ x+t{ sec }^{ 2 }x\} =0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ x+t{ sec }^{ 2 }x\quad =\quad l\pi \quad For\quad some\quad integer\quad l.\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ x+4t\quad =\quad l\pi ,\quad \therefore 2k\pi \pm \frac { \pi }{ 3 } \quad +\quad 4t\quad =\quad l\pi \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \therefore 4t\quad =\quad (l-2k)\pi \quad \mp \quad \frac { \pi }{ 3 } \quad \quad (l-2k)\quad can\quad be\quad be\quad assumed\quad to\quad be\quad another\quad integer\quad m.\quad \quad \quad \quad \quad \\ Hence,\quad t\quad =\quad \frac { \pi }{ 12 } \left( 3m\quad \mp \quad 1 \right) . .

Grt solution.!!!!nice question.

Spandan Senapati - 4 years, 4 months ago

The "coprime positive integers" needs to be clarified. Note that gcd ( a , b ) 1 \gcd (a, b) \neq 1 .

Calvin Lin Staff - 4 years, 4 months ago

It should be mentioned that a,b and c are all simultaneously co prime isn't it?

Sibasish Mishra - 4 years, 4 months ago

Rather void confusion by asking the least possible blue of a+b+c

Spandan Senapati - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...