Such A Long sequence

Algebra Level 4

1 3 1 + 3 + 1 5 3 + 3 5 . . . . . . . . . . . + 1 225 223 + 223 225 = ? \large \frac{1}{3\sqrt1+\sqrt3}+\frac{1}{5\sqrt3+3\sqrt5}...........+\frac{1}{225\sqrt{223}+223\sqrt{225}} = ?

If this sum can be represented as a b \frac{a}{b} , where both a , b a,b are square free and positive integers, find ( a $ b ) \large(a\$b) if the operation ( a $ b ) \large(a\$b) is defined as b ( m o d a ) \large b \pmod{a} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arif Ahmed
Sep 19, 2014

k = 1 112 1 ( 2 k + 1 ) 2 k 1 + ( 2 k 1 ) 2 k + 1 \sum _{ k = 1 }^{ 112 }{ \frac { 1 }{ (2k+1)\sqrt { 2k-1 } \quad +\quad (2k-1)\sqrt { 2k+1 } } }

0.5 k = 1 112 ( 2 k + 1 ) ( 2 k 1 ) ( 2 k + 1 ) 2 k 1 + ( 2 k 1 ) 2 k + 1 0.5\sum _{ k = 1 }^{ 112 }{ \frac { (2k + 1) - (2k - 1) }{ (2k+1)\sqrt { 2k - 1 } + (2k-1)\sqrt { 2k+1 } } }

0.5 k = 1 112 ( 2 k + 1 2 k 1 ) ( 2 k + 1 + 2 k 1 ) ( 2 k 1 2 k + 1 ) × ( 2 k + 1 + 2 k 1 ) 0.5\sum _{ k = 1 }^{ 112 }{ \frac { (\sqrt { 2k+1 } - \sqrt { 2k-1 } )(\sqrt { 2k+1 } +\sqrt { 2k-1 } ) }{ (\sqrt { 2k-1 } \sqrt { 2k+1 } )\times(\sqrt { 2k+1 } +\sqrt { 2k-1 } ) } }

0.5 k = 1 112 1 2 k 1 1 2 k + 1 0.5\sum _{ k = 1 }^{ 112 }{ \frac { 1 }{ \sqrt { 2k-1 } } } -\frac { 1 }{ \sqrt { 2k+1 } }

This telescopes to 7 15 \frac { 7 }{ 15 }

Therefore answer is : 15 mod 7 = 1

how is 15mod7=1

Somnath KVS - 6 years, 5 months ago

Yes, Rationalizing will help.

k = 1 112 1 ( 2 k + 1 ) 2 k 1 + ( 2 k 1 ) 2 k + 1 \displaystyle \sum\limits_{k=1}^{112} \frac{1}{(2k+1)\sqrt{2k-1} + (2k-1)\sqrt{2k+1}}

= k = 1 112 1 ( ( 2 k + 1 ) ( 2 k 1 ) ) ( 2 k + 1 + 2 k 1 ) = \displaystyle \sum\limits_{k=1}^{112} \frac{1}{(\sqrt{(2k+1)(2k-1)})(\sqrt{2k+1} + \sqrt{2k-1})}

= k = 1 112 2 k + 1 2 k 1 ( ( 2 k + 1 ) ( 2 k 1 ) ) ( 2 k + 1 + 2 k 1 ) ( 2 k + 1 2 k 1 ) = \displaystyle \sum\limits_{k=1}^{112} \frac{\sqrt{2k+1}-\sqrt{2k-1}}{(\sqrt{(2k+1)(2k-1)})(\sqrt{2k+1} + \sqrt{2k-1})(\sqrt{2k+1}-\sqrt{2k-1)}}

= k = 1 112 2 k + 1 2 k 1 ( ( 2 k + 1 ) ( 2 k 1 ) ) × 2 = \displaystyle \sum\limits_{k=1}^{112} \frac{\sqrt{2k+1}-\sqrt{2k-1}}{(\sqrt{(2k+1)(2k-1)})\times 2}

= 1 2 × k = 1 112 ( 1 2 k 1 1 2 k + 1 ) = \displaystyle \frac{1}{2} \times \sum\limits_{k=1}^{112} \left(\frac{1}{\sqrt{2k-1}} - \frac{1}{\sqrt{2k+1}}\right)

= 1 2 × ( 1 1 15 ) = \displaystyle \frac{1}{2}\times \left(1 - \frac{1}{15}\right)

= 7 15 = \displaystyle \boxed{\frac{7}{15}}

Nice title! :D

milind prabhu - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...