3 1 + 3 1 + 5 3 + 3 5 1 . . . . . . . . . . . + 2 2 5 2 2 3 + 2 2 3 2 2 5 1 = ?
If this sum can be represented as b a , where both a , b are square free and positive integers, find ( a $ b ) if the operation ( a $ b ) is defined as b ( m o d a ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
how is 15mod7=1
Yes, Rationalizing will help.
k = 1 ∑ 1 1 2 ( 2 k + 1 ) 2 k − 1 + ( 2 k − 1 ) 2 k + 1 1
= k = 1 ∑ 1 1 2 ( ( 2 k + 1 ) ( 2 k − 1 ) ) ( 2 k + 1 + 2 k − 1 ) 1
= k = 1 ∑ 1 1 2 ( ( 2 k + 1 ) ( 2 k − 1 ) ) ( 2 k + 1 + 2 k − 1 ) ( 2 k + 1 − 2 k − 1 ) 2 k + 1 − 2 k − 1
= k = 1 ∑ 1 1 2 ( ( 2 k + 1 ) ( 2 k − 1 ) ) × 2 2 k + 1 − 2 k − 1
= 2 1 × k = 1 ∑ 1 1 2 ( 2 k − 1 1 − 2 k + 1 1 )
= 2 1 × ( 1 − 1 5 1 )
= 1 5 7
Nice title! :D
Problem Loading...
Note Loading...
Set Loading...
∑ k = 1 1 1 2 ( 2 k + 1 ) 2 k − 1 + ( 2 k − 1 ) 2 k + 1 1
0 . 5 ∑ k = 1 1 1 2 ( 2 k + 1 ) 2 k − 1 + ( 2 k − 1 ) 2 k + 1 ( 2 k + 1 ) − ( 2 k − 1 )
0 . 5 ∑ k = 1 1 1 2 ( 2 k − 1 2 k + 1 ) × ( 2 k + 1 + 2 k − 1 ) ( 2 k + 1 − 2 k − 1 ) ( 2 k + 1 + 2 k − 1 )
0 . 5 ∑ k = 1 1 1 2 2 k − 1 1 − 2 k + 1 1
This telescopes to 1 5 7
Therefore answer is : 15 mod 7 = 1