No solving for x x

Algebra Level 3

Given that x x is a complex number satisfying x + 1 x = 5 x + \dfrac{1}{x} = 5 , find the value of x 4 + 1 x 4 x^4 + \dfrac{1}{x^4} .


The answer is 527.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 4 + 1 x 4 = y \Rightarrow x^4+\dfrac{1}{x^4}=y

[ ( x + 1 x ) 2 2 ] 2 2 = y \left [\left(x+\dfrac{1}{x}\right)^2-2 \right]^2-2=y

[ ( 5 ) 2 2 ] 2 2 = y \left [(5)^2-2\right ]^2-2=y

y = 527 y=527

x 4 + 1 x 4 = 527 \Rightarrow x^4+\dfrac{1}{x^4}=\boxed{527}

Arulx Z
Jan 25, 2016

x + 1 x = 5 ( x + 1 x ) 2 = 5 2 x 2 + 1 x 2 + 2 = 25 x 2 + 1 x 2 = 23 ( x 2 + 1 x 2 ) 2 = 23 2 x 4 + 1 x 4 + 2 = 529 x 4 + 1 x 4 = 527 x+\frac { 1 }{ x } =5\\ { \left( x+\frac { 1 }{ x } \right) }^{ 2 }={ 5 }^{ 2 }\\ { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } +2=25\\ { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =23\\ { \left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) }^{ 2 }={ 23 }^{ 2 }\\ { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } +2=529\\ { x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } =527

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...