No Squares

If f ( n ) f(n) is the probability that no integer square number lies between two randomly picked real numbers between 0 0 and n 2 n^2 , where n n is an integer, then lim n n f ( n ) = a b \displaystyle \lim_{n\to\infty} n \cdot f(n) = \frac{a}{b} where a a and b b are positive co-prime integers. Find a + b a + b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jul 3, 2019

Assume the probability distribution mentioned follows a uniform distribution .

Define the notation [ a , b ] c [ a,b]_c as the probability of randomly choosing 2 real numbers between 0 0 and c c such that they fall in between a a and b b , where 0 a b c 0\leq a\leq b\leq c .

For example, f ( 1 ) = [ 0 , 1 ] 1 = 1 f(1) = [0,1]_1 = 1 and f ( 2 ) = [ 0 , 1 ] 4 + [ 1 , 4 ] 4 = ( 1 4 ) 2 + ( 3 4 ) 2 = 5 8 f(2) = [0,1]_4 + [1,4]_4 = \left(\frac 14\right)^2 + \left(\frac34\right)^2 = \frac58 .

In general,

f ( n ) = [ 0 , 1 ] n 2 + [ 1 , 4 ] n 2 + [ 4 , 9 ] n 2 + + [ ( n 1 ) 2 , n 2 ] n 2 = ( 1 n 2 ) 2 + ( 3 n 2 ) 2 + ( 5 n 2 ) 2 + + ( 2 n 1 n 2 ) 2 = 1 n 4 [ 1 2 + 3 2 + 5 2 + + ( 2 n 1 ) 2 ] \begin{array} { l c l } f(n) &=& [0,1]_{n^2} + [1,4]_{n^2} + [4,9]_{n^2} + \cdots + [(n-1)^2 , n^2]_{n^2} \\ &=& \displaystyle \left(\frac1{n^2} \right)^2 + \left(\frac3{n^2} \right)^2 + \left(\frac5{n^2} \right)^2 + \cdots + \left(\frac{2n-1}{n^2} \right)^2 \\ &=& \displaystyle \frac1{n^4} \left [ 1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 \right ] \end{array}

We have lim n n f ( n ) = lim n 1 2 + 3 2 + 5 2 + + ( 2 n 1 ) 2 n 3 \displaystyle \lim_{n\to\infty} n f(n) = \lim_{n\to\infty} \dfrac{1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 }{n^3} .

Let a n = 1 2 + 3 2 + 5 2 + + ( 2 n 1 ) 2 a_n = 1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 and b n = n 3 b_n = n^3 . By Stolz–Cesàro theorem , if lim n a n + 1 a n b n + 1 b n \displaystyle \lim_{n\to\infty}\dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} is finite and is equal to l l , then so does the limit in question.

lim n a n + 1 a n b n + 1 b n = lim n ( 2 n + 1 ) 2 ( n + 1 ) 3 n 3 = 4 3 \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n\to\infty} \dfrac{(2n+1)^2}{ (n+1)^3 - n^3} = \dfrac43

Hence, the limit in question is equal to 4 3 \frac43 . Our answer is 4 + 3 = 7 4 + 3 = \boxed7 .

Nice solution!

David Vreken - 1 year, 11 months ago

Log in to reply

Nice question!

Pi Han Goh - 1 year, 11 months ago

Same way!!! Although I didn't use Stolz-Cesaro.......nice!!

Aaghaz Mahajan - 1 year, 11 months ago

Log in to reply

Yes, we can also use the identity 1 2 + 2 2 + + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2 + 2^2 + \cdots + n^2 = \frac16n(n+1)(2n+1) to show that 1 2 + 3 2 + 5 2 + + ( 2 n 1 ) 2 = n 3 ( 2 n + 1 ) ( 2 n 1 ) 1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 = \frac n3 (2n+1)(2n-1) . Or just use induction.

Pi Han Goh - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...