No Technique Needed?

Calculus Level 5

lim n ln [ 1 2 n k = 1 n ( 2 + k n 2 ) ] = ? \large \lim_{n\to\infty}\ln\left[\dfrac{1}{2^n}\prod_{k=1}^n \left(2+\dfrac{k}{n^2}\right)\right] = \, ?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have that: ln [ 1 2 n k = 1 n ( 2 + k n 2 ) ] = k = 1 n ln ( 1 + k 2 n 2 ) \displaystyle \ln\left[\dfrac{1}{2^n}\prod_{k=1}^n \left(2+\dfrac{k}{n^2}\right)\right]=\sum_{k=1}^n \ln\left(1+\dfrac{k}{2n^2}\right)

and since x x 2 2 < ln ( 1 + x ) < x x > 0 x-\dfrac{x^2}{2}<\ln(1+x)<x\qquad\forall x>0

then k = 1 n k 2 n 2 1 2 k = 1 n k 2 4 n 4 < ln [ 1 2 n k = 1 n ( 2 + k n 2 ) ] < k = 1 n k 2 n 2 \displaystyle \sum_{k=1}^n \dfrac{k}{2n^2}-\dfrac{1}{2}\sum_{k=1}^n \dfrac{k^2}{4n^4}<\ln\left[\dfrac{1}{2^n}\prod_{k=1}^n \left(2+\dfrac{k}{n^2}\right)\right]<\sum_{k=1}^n \dfrac{k}{2n^2} .

But k = 1 n k 2 n 2 = 1 2 n 2 k = 1 n k = n ( n + 1 ) 4 n 2 1 4 \displaystyle \sum_{k=1}^n \dfrac{k}{2n^2}=\dfrac{1}{2n^2}\sum_{k=1}^n k=\dfrac{n(n+1)}{4n^2}\longrightarrow\dfrac{1}{4}

and k = 1 n k 2 4 n 4 = 1 4 n 4 k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 24 n 4 0 \displaystyle \sum_{k=1}^n \dfrac{k^2}{4n^4}=\dfrac{1}{4n^4}\sum_{k=1}^n k^2=\dfrac{n(n+1)(2n+1)}{24n^4}\longrightarrow0

So lim n ln [ 1 2 n k = 1 n ( 2 + k n 2 ) ] = 1 4 = 0.25 \displaystyle \lim_{n\to\infty}\ln\left[\dfrac{1}{2^n}\prod_{k=1}^n \left(2+\dfrac{k}{n^2}\right)\right]=\dfrac{1}{4}=\boxed{0.25}

in this case, why we cannot directly put "n=infinity" after expanding ??

Thushar Mn - 5 years, 3 months ago

nice sandwich theorom problem

Dhruv Aggarwal - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...