No, that's not possible

Algebra Level 5

I have 999 consecutive positive integers such that the sum of squares of the first 500 integers is equals to the sum of squares of the last 499 integers. What is the average of these 999 numbers?


The answer is 499000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Take the 500-th number as k k . This is the average of the 999 numbes.

Now,

i = 0 499 ( k i ) 2 = i = 1 499 ( k + i ) 2 \sum_{i=0}^{499} (k-i)^2 = \sum_{i=1}^{499} (k+i)^2

Thus,

k 2 = i = 1 499 ( ( k + i ) 2 ( k i ) 2 ) k^2 = \sum_{i=1}^{499} \left((k+i)^2-(k-i)^2\right)

k 2 = i = 1 499 ( 2 k ) ( 2 i ) k^2 = \sum_{i=1}^{499} (2k)(2i)

k = 4 i = 1 499 i = 4 499 500 2 = 499000 k = 4 \sum_{i=1}^{499} i = 4 \frac{499*500}{2} = \boxed{499000}

Let the middle number be x, and the first 500, ( x 499 ) , ( x 498 ) , . . . ( . x 1 ) , x a n d t h e l a s t 499 , ( x + 1 ) , ( x + 2 ) , . . . ( x + 499 ) Squaring adding and equating, ( x 499 ) 2 + ( x 498 ) 2 + . . . + ( x 1 ) 2 + x 2 = ( x + 1 ) 2 + ( x + 2 ) + . . . ( x + 499 ) 2 R e d u c e s t o , x 2 = 4 x ( 499 + 498 + . . . 2 + 1 ) = 4 x 499 500 2 = 499000 x t h e a v e r a g e = m i d d l e t e r m = x = 499000 \text{Let the middle number be x, and the first 500, }\\ (x-499), (x-498), . . .(.x-1), x~~\\and~ the~ last~ 499, ~~~~(x+1),(x+2), . . . (x+499)\\ \text{Squaring adding and equating,}\\ (x-499)^2+ (x-498)^2+ . . . +(x-1)^2+ x^2\\=(x+1)^2+(x+2)+ . . . (x+499)^2\\Reduces~~ to,\\x^2=4x*(499+498+ . . . 2+1)=4x*\dfrac{499*500} 2= 499000x\\\implies~~the ~average=middle ~term ~=x=~~~~\large \color{#D61F06}{499000}

Let n n be the least of the sequence of 999 999 integers. Then the average of these numbers will be n + 499. n + 499. Now we are given that

k = n n + 499 k 2 = k = n + 500 n + 998 k 2 \displaystyle\sum_{k=n}^{n + 499} k^{2} = \sum_{k=n+500}^{n+998} k^{2}

( n + 499 ) 2 = k = n n + 498 ( ( k + 500 ) 2 k 2 ) \Longrightarrow (n + 499)^{2} = \displaystyle\sum_{k=n}^{n+498} ((k+500)^{2} - k^{2})

( n + 499 ) 2 = k = n n + 498 ( 1000 k + 50 0 2 ) \Longrightarrow (n + 499)^{2} = \displaystyle\sum_{k=n}^{n+498} (1000k + 500^{2})

( n + 499 ) 2 = ( 1000 k = n n + 498 k ) + 499 50 0 2 \Longrightarrow (n + 499)^{2} = \left(1000\displaystyle\sum_{k=n}^{n+498} k\right) + 499*500^{2}

( n + 499 ) 2 = 500 ( ( n + 498 ) ( n + 499 ) ( n 1 ) n ) + 499 50 0 2 = \Longrightarrow (n + 499)^{2} = 500((n + 498)(n + 499) - (n - 1)n) + 499*500^{2} =

500 ( 998 n + 498 499 ) + 499 50 0 2 = 500(998n + 498*499) + 499*500^{2} =

500 998 ( n + 249 ) + 499 50 0 2 = 500*998*(n + 249) + 499*500^{2} =

500 998 ( n + 249 + 250 ) = 500 998 ( n + 499 ) 500*998*(n + 249 + 250) = 500*998*(n + 499)

n + 499 = 500 998 = 499000 . \Longrightarrow n + 499 = 500*998 = \boxed{499000}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...