Remainders Are Fun 6

Algebra Level 4

For i N i \in \mathbb{N} , let

x i = i 1 ( i + 1 ) ( i 4 + 1 ) ( i 8 + 1 ) ( i 16 + 1 ) \large x_i = \dfrac{i - 1}{(\sqrt{i} + 1)(\sqrt[4]{i} + 1)(\sqrt[8]{i} + 1)(\sqrt[16]{i} + 1)}

Evaluate i = 1 2017 ( x i + 1 ) 48 m o d 1000 \displaystyle \sum_{i = 1}^{2017} \left(x_i + 1\right)^{48} \bmod 1000 .


For more problems like this, try answering this set .


The answer is 409.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 11, 2017

x i = i 1 ( i + 1 ) ( i 4 + 1 ) ( i 8 + 1 ) ( i 16 + 1 ) Let a = i 16 . = a 16 1 ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) = ( a 8 + 1 ) ( a 8 1 ) ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) = ( a 8 + 1 ) ( a 4 + 1 ) ( a 4 1 ) ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) = ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a 2 1 ) ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) = ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) ( a 1 ) ( a 8 + 1 ) ( a 4 + 1 ) ( a 2 + 1 ) ( a + 1 ) = a 1 = i 16 1 \begin{aligned} x_i & = \frac {i-1}{(\sqrt i+1)(\sqrt [4] i+1)(\sqrt [8] i+1)(\sqrt [16] i+1)} & \small \color{#3D99F6} \text{Let }a = \sqrt [16] i . \\ & = \frac {a^{16}-1}{(a^8+1)(a^4+1)(a^2+1)(a+1)} \\ & = \frac {(a^8+1)(a^8-1)}{(a^8+1)(a^4+1)(a^2+1)(a+1)} \\ & = \frac {(a^8+1)(a^4+1)(a^4-1)}{(a^8+1)(a^4+1)(a^2+1)(a+1)} \\ & = \frac {(a^8+1)(a^4+1)(a^2+1)(a^2-1)}{(a^8+1)(a^4+1)(a^2+1)(a+1)} \\ & = \frac {(a^8+1)(a^4+1)(a^2+1)(a+1)(a-1)}{(a^8+1)(a^4+1)(a^2+1)(a+1)} \\ & = a - 1 \\ & = \sqrt [16] i - 1 \end{aligned}

Therefore, we have:

i = 1 2017 ( x i + 1 ) 48 = i = 1 2017 ( i 16 1 + 1 ) 48 = i = 1 2017 i 3 = ( 2017 × 2018 2 ) 2 = ( 2017 × 1009 ) 2 ( 17 × 9 ) 2 23409 409 (mod 1000) \begin{aligned} \sum_{i=1}^{2017} (x_i + 1)^{48} & = \sum_{i=1}^{2017} (\sqrt [16] i - 1 + 1)^{48} = \sum_{i=1}^{2017} i^3 = \left( \frac {2017 \times 2018}2 \right)^2 = (2017 \times 1009)^2 \\ & \equiv (17 \times 9)^2 \equiv 23409 \equiv \boxed{409} \text{ (mod 1000)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...