Classical Inequalities addicts can do this. Part 4

Algebra Level 4

a 2 + b 2 + c 2 + d 2 a b + 4 b c + c d \large \frac{a^2 + b^2 + c^2 + d^2}{ab + 4bc + cd}

For a , b , c , d > 0 a, b, c, d > 0 , let α \alpha be the minimum value of the expression above. Evaluate: ( α + 4 ) 6 64 \dfrac{(\alpha + 4)^6}{64} .


For more problems like this, try answering this set .


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Jun 21, 2017

Using A.M.-G.M. for reals x , y x,y we have x 2 + y 2 2 x y x^2+y^2 \geq 2xy

Here coefficient of a b ab and c d cd is unity unlike the coefficient of b c bc

a 2 + m b 2 2 m a b d 2 + n c 2 2 n c d ( 1 m ) b 2 + ( 1 n ) c 2 2 ( 1 m ) ( 1 n ) b c a^2 +m b^2 \geq 2 \sqrt{m} ab \\ d^2+n c^2 \geq 2 \sqrt{n} cd \\ (1-m) b^2 + (1-n) c^2 \geq 2 \sqrt{(1-m)(1-n)} bc

Let the minimum value is k k then a 2 + b 2 + c 2 + d 2 k a b + 4 k b c + k c d a^2+b^2+c^2+d^2 \geq k ab +4k bc+ kcd

Adding the above three equations we get a 1 + b 2 + c 2 + d 2 2 m a b + 2 ( 1 m ) ( 1 n ) b c + + 2 n c d a^1+b^2+c^2+d^2 \geq 2 \sqrt{m} ab+ 2 \sqrt{(1-m)(1-n)} bc + + 2 \sqrt{n} cd

Comparing above two equations k = 2 n = 2 m m = n k=2 \sqrt{n}=2 \sqrt{m} \implies m=n

Putting this in third part 4 k = 2 ( 1 m ) ( 1 n ) 2 k = ( 1 m ) ( 1 n ) 2 k = 1 m = 4 m 4k= 2 \sqrt{(1-m)(1-n)} \\ 2k= \sqrt{(1-m)(1-n)} \\ 2k=1-m=4\sqrt{m}

On solving we get m = 9 4 5 m=9-4 \sqrt{5} (As m,n are less than one)

So, k = 2 m = 2 9 4 5 = 2 ( 5 2 ) k=2 \sqrt{m}=2 \sqrt{9-4\sqrt{5}}=2(\sqrt{5}-2) which is the required minimum value.

Sir, i think you mean in the 6th line, Let the MINIMUM value be k. :)

Christian Daang - 3 years, 11 months ago

Log in to reply

Oh Thanks fixed

Kushal Bose - 3 years, 11 months ago
Christian Daang
Jun 30, 2017

By AM-GM ,

a 2 + ( 9 4 5 ) b 2 2 ( 5 2 ) a b ( 4 5 8 ) b 2 + ( 4 5 8 ) c 2 2 ( 5 2 ) 4 b c ( 9 4 5 ) c 2 + d 2 2 ( 5 2 ) c d \begin{aligned} a^2 + (9 - 4\sqrt{5})b^2 &\ge 2(\sqrt{5} - 2)ab \\ (4\sqrt{5} - 8)b^2 + (4\sqrt{5} - 8)c^2 &\ge 2(\sqrt{5} - 2)4bc \\ (9 - 4\sqrt{5})c^2 + d^2 &\ge 2(\sqrt{5} - 2)cd \end{aligned}

Adding the 3 inequalities yields a 2 + b 2 + c 2 + d 2 2 ( 5 2 ) ( a b + 4 b c + c d ) a^2 + b^2 + c^2 + d^2 \ge 2(\sqrt{5} - 2)(ab + 4bc + cd)

Dividing both sides by a b + 4 b c + c d ab + 4bc + cd

a 2 + b 2 + c 2 + d 2 a b + 4 b c + c d 2 5 4 α = 2 5 4 ( α + 4 ) 6 64 = 125 \implies \dfrac{a^2 + b^2 + c^2 + d^2}{ab + 4bc + cd} \ge 2\sqrt{5} - 4 \\ \implies \alpha = 2\sqrt{5} - 4 \\ \therefore \dfrac{(\alpha + 4)^6}{64} = \boxed{125}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...