I Was Very Amazed At The Solution 12

Algebra Level 4

A certain sequence is such that its first term x 1 = 2017 x_1 = 2017 and for n 1 n \ge 1 , x n + 1 = ( 2 + 1 ) x n 1 2 + 1 + x n x_{n+1} = \dfrac{\left( \sqrt{2} + 1 \right)x_{n} - 1}{\sqrt{2} + 1 + x_n }

If x 2015 = a b x_{2015} = -\dfrac{a}{b} , where a a and b b are coprime positive integers, what is a + 2 b a+2b ?


For more problems like this, try this set .


The answer is 3025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 24, 2017

x n + 1 = ( 2 + 1 ) x n 1 2 + 1 + x n Let x n = tan θ n tan θ n + 1 = ( 2 + 1 ) tan θ n 1 2 + 1 + tan θ n Note: tan 3 π 8 = 2 + 1 = tan 3 π 8 tan θ n 1 tan 3 π 8 + tan θ n = 1 tan ( θ n + 3 π 8 ) Note: tan ( π x ) = tan x = 1 tan ( 5 π 8 θ n ) = cot ( 5 π 8 θ n ) Note: cot ( π 2 x ) = tan x = tan ( θ n π 8 ) θ n + 1 = θ n π 8 An arithmetic progression θ n = θ 1 ( n 1 ) π 8 where θ 1 = tan 1 2017 x n = tan ( θ 1 ( n 1 ) π 8 ) x 2015 = tan ( θ 1 ( 2014 ) π 8 ) = tan ( θ 1 3 π 4 ) = tan ( θ 1 + π 4 ) = tan θ 1 + 1 1 tan θ 1 = 2018 2016 = 1009 1008 \begin{aligned} \color{#3D99F6}x_{n+1} & = \frac {(\sqrt 2+1){\color{#3D99F6}x_n} - 1}{\sqrt 2+1+{\color{#3D99F6}x_n}} & \small \color{#3D99F6} \text{Let }x_n = \tan \theta_n \\ \color{#3D99F6}\tan \theta_{n+1} & = \frac {({\color{#D61F06}\sqrt 2+1}){\color{#3D99F6}\tan \theta_n} - 1}{{\color{#D61F06}\sqrt 2+1}+{\color{#3D99F6}\tan \theta_n}} & \small \color{#D61F06} \text{Note: } \tan \frac {3\pi}8 = \sqrt 2+1 \\ & = \frac {{\color{#D61F06}\tan \frac {3\pi}8}\tan \theta_n - 1}{{\color{#D61F06}\tan \frac {3\pi}8}+\tan \theta_n} \\ & = - \frac 1{\color{#3D99F6}\tan \left(\theta_n + \frac {3\pi}8 \right)} & \small \color{#3D99F6} \text{Note: } \tan (\pi -x) = - \tan x \\ & = \frac 1{\color{#3D99F6}\tan \left(\frac {5\pi}8 - \theta_n\right)} \\ & =\color{#3D99F6} \cot \left(\frac {5\pi}8 - \theta_n\right) & \small \color{#3D99F6} \text{Note: } \cot \left(\frac \pi 2 - x\right) = \tan x \\ & = \color{#3D99F6} \tan \left( \theta_n - \frac \pi 8\right) \\ \implies \theta_{n+1} & = \theta_n - \frac \pi 8 & \small \color{#3D99F6} \text{An arithmetic progression} \\ \theta_n & = \theta_1 - (n-1)\frac \pi 8 & \small \color{#3D99F6} \text{where }\theta_1 = \tan^{-1} 2017 \\ \implies x_n & = \tan \left(\theta_1 - (n-1)\frac \pi 8 \right) \\ x_{2015} & = \tan \left(\theta_1 - (2014)\frac \pi 8 \right) \\ & = \tan \left(\theta_1 - \frac {3\pi}4 \right) \\ & = \tan \left(\theta_1 + \frac \pi 4 \right) \\ & = \frac {\tan \theta_1+1}{1-\tan \theta_1} \\ & = - \frac {2018}{2016} = - \frac {1009}{1008} \end{aligned}

a + 2 b = 1009 + 2 ( 1008 ) = 3025 \implies a + 2b = 1009 + 2(1008) = \boxed{3025}

The Solution is really great. Fantastic. ^^

Christian Daang - 3 years, 10 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 3 years, 10 months ago

Sir, i am not getting how did you come up with fifth last step

Shefali Sharma - 2 years, 8 months ago

Log in to reply

Note that for angle 2 n π + θ θ 2n\pi + \theta \equiv \theta , where n n is an integer. 2014 8 π 1007 4 π 250 π + 7 4 π 7 4 π \frac {2014}8 \pi \equiv \frac {1007}4 \pi \equiv 250\pi + \frac 74\pi \equiv \frac 74 \pi . And we note that tan ( π + θ ) = tan θ \tan (\pi + \theta) = \tan \theta . Therefore, tan 7 4 π = tan ( π + 3 4 π ) = tan 3 4 π \tan \frac 74 \pi = \tan \left(\pi + \frac 34\pi\right) = \tan \frac 34 \pi .

Chew-Seong Cheong - 2 years, 8 months ago

Log in to reply

Oh I got it, Thank you so much for replying

Shefali Sharma - 2 years, 8 months ago
Christian Daang
Jul 23, 2017

Using the iterative formula above,

x n + 2 = ( 2 + 1 ) ( x n + 1 ) 1 ( 2 + 1 ) + x n + 1 = ( 2 + 1 ) ( ( 2 + 1 ) ( x n ) 1 ( 2 + 1 ) + x n ) 1 ( 2 + 1 ) + ( 2 + 1 ) ( x n ) 1 ( 2 + 1 ) + x n 2 + 1 + x n 2 + 1 + x n = ( 3 + 2 2 ) ( x n ) ( 1 + 2 ) ( 2 + 1 + x n ) ( 3 + 2 2 ) + ( 1 + 2 ) ( x n ) + ( 2 + 1 ) ( x n ) 1 = ( 2 + 2 2 ) ( x n ) ( 2 + 2 2 ) ( 2 + 2 2 ) ( x n ) + ( 2 + 2 2 ) = x n 1 x n + 1 \begin{aligned} \displaystyle x_{n+2} &= \dfrac{\left( \sqrt{2} + 1 \right)\left( \color{#D61F06}{x_{n+1}} \right) - 1}{\left( \sqrt{2} + 1 \right) +\color{#D61F06}{x_{n+1}} } \\ &= \dfrac{\left( \sqrt{2} + 1 \right)\left( \color{#D61F06}{\dfrac{\left( \sqrt{2} + 1 \right)(x_{n}) - 1}{\left( \sqrt{2} + 1 \right) + x_n }} \right) - 1}{\left( \sqrt{2} + 1 \right) + \color{#D61F06}{\dfrac{\left( \sqrt{2} + 1 \right)(x_{n}) - 1}{\left( \sqrt{2} + 1 \right) + x_n }} } \cdot \dfrac{ \sqrt{2} + 1 + x_n }{ \sqrt{2} + 1 + x_n } = \dfrac{\left(3 + 2\sqrt{2}\right)(x_n) - \left(1 + \sqrt{2}\right) - \left( \sqrt{2} + 1 + x_n \right)}{\left(3 + 2\sqrt{2}\right) + \left(1 + \sqrt{2}\right)(x_n) + \left( \sqrt{2} + 1\right)(x_n) - 1} \\ &= \dfrac{ \left( 2 + 2\sqrt{2} \right)(x_n) - \left(2 + 2\sqrt{2} \right)}{ \left( 2 + 2\sqrt{2} \right)(x_n) + \left(2 + 2\sqrt{2} \right)} \\ &= \dfrac{x_n - 1}{x_n + 1} \end{aligned}

Now, x n + 4 = ( x n + 2 ) 1 ( x n + 2 ) + 1 = ( x n 1 x n + 1 ) 1 ( x n 1 x n + 1 ) + 1 = 1 x n x_{n+4} = \dfrac{ \left( \color{#E81990}{x_{n+2} } \right) - 1 }{ \left( \color{#E81990}{ x_{n+2} } \right) + 1 } = \dfrac{ \left( \color{#E81990}{ \dfrac{x_n - 1}{x_n + 1} } \right) - 1 }{ \left( \color{#E81990}{ \dfrac{x_n - 1}{x_n + 1} }\right) + 1 } = -\dfrac{1}{x_n}

x n + 8 = 1 x n + 4 = 1 ( 1 x n ) = x n \therefore x_{n+8} = -\dfrac{1}{ \color{#20A900}{x_{n+4}}} = -\dfrac{1}{ \left( \color{#20A900}{ -\dfrac{1}{x_n} }\right) } = x_n

x 2015 = x 2007 = x 1999 = = x 7 = 1 x 3 = 1 ( x 1 1 x 1 + 1 ) = 2018 2016 = 1009 1008 a = 1009 , b = 1008 a + 2 b = 3025 \begin{aligned} \implies x_{2015} = x_{2007} = x_{1999} = \cdots = x_7 &= -\dfrac{1}{ \color{cyan}{x_3}} \\ &= -\dfrac{1}{ \left( \color{cyan}{ \dfrac{x_1 - 1}{x_1 + 1}} \right) } \\ &= -\dfrac{2018}{2016} \\ &= -\dfrac{1009}{1008} \implies a = 1009 \ , \ b = 1008 \\ \therefore \boxed{a + 2b = 3025} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...