A certain sequence is such that its first term x 1 = 2 0 1 7 and for n ≥ 1 , x n + 1 = 2 + 1 + x n ( 2 + 1 ) x n − 1
If x 2 0 1 5 = − b a , where a and b are coprime positive integers, what is a + 2 b ?
For more problems like this, try this set .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The Solution is really great. Fantastic. ^^
Sir, i am not getting how did you come up with fifth last step
Log in to reply
Note that for angle 2 n π + θ ≡ θ , where n is an integer. 8 2 0 1 4 π ≡ 4 1 0 0 7 π ≡ 2 5 0 π + 4 7 π ≡ 4 7 π . And we note that tan ( π + θ ) = tan θ . Therefore, tan 4 7 π = tan ( π + 4 3 π ) = tan 4 3 π .
Using the iterative formula above,
x n + 2 = ( 2 + 1 ) + x n + 1 ( 2 + 1 ) ( x n + 1 ) − 1 = ( 2 + 1 ) + ( 2 + 1 ) + x n ( 2 + 1 ) ( x n ) − 1 ( 2 + 1 ) ( ( 2 + 1 ) + x n ( 2 + 1 ) ( x n ) − 1 ) − 1 ⋅ 2 + 1 + x n 2 + 1 + x n = ( 3 + 2 2 ) + ( 1 + 2 ) ( x n ) + ( 2 + 1 ) ( x n ) − 1 ( 3 + 2 2 ) ( x n ) − ( 1 + 2 ) − ( 2 + 1 + x n ) = ( 2 + 2 2 ) ( x n ) + ( 2 + 2 2 ) ( 2 + 2 2 ) ( x n ) − ( 2 + 2 2 ) = x n + 1 x n − 1
Now, x n + 4 = ( x n + 2 ) + 1 ( x n + 2 ) − 1 = ( x n + 1 x n − 1 ) + 1 ( x n + 1 x n − 1 ) − 1 = − x n 1
∴ x n + 8 = − x n + 4 1 = − ( − x n 1 ) 1 = x n
⟹ x 2 0 1 5 = x 2 0 0 7 = x 1 9 9 9 = ⋯ = x 7 ∴ a + 2 b = 3 0 2 5 = − x 3 1 = − ( x 1 + 1 x 1 − 1 ) 1 = − 2 0 1 6 2 0 1 8 = − 1 0 0 8 1 0 0 9 ⟹ a = 1 0 0 9 , b = 1 0 0 8
Problem Loading...
Note Loading...
Set Loading...
x n + 1 tan θ n + 1 ⟹ θ n + 1 θ n ⟹ x n x 2 0 1 5 = 2 + 1 + x n ( 2 + 1 ) x n − 1 = 2 + 1 + tan θ n ( 2 + 1 ) tan θ n − 1 = tan 8 3 π + tan θ n tan 8 3 π tan θ n − 1 = − tan ( θ n + 8 3 π ) 1 = tan ( 8 5 π − θ n ) 1 = cot ( 8 5 π − θ n ) = tan ( θ n − 8 π ) = θ n − 8 π = θ 1 − ( n − 1 ) 8 π = tan ( θ 1 − ( n − 1 ) 8 π ) = tan ( θ 1 − ( 2 0 1 4 ) 8 π ) = tan ( θ 1 − 4 3 π ) = tan ( θ 1 + 4 π ) = 1 − tan θ 1 tan θ 1 + 1 = − 2 0 1 6 2 0 1 8 = − 1 0 0 8 1 0 0 9 Let x n = tan θ n Note: tan 8 3 π = 2 + 1 Note: tan ( π − x ) = − tan x Note: cot ( 2 π − x ) = tan x An arithmetic progression where θ 1 = tan − 1 2 0 1 7
⟹ a + 2 b = 1 0 0 9 + 2 ( 1 0 0 8 ) = 3 0 2 5