Remainders Are Fun 4

Calculus Level 5

For n N n ∈ \mathbb{N} , there is a sequence a 1 , a 2 , a 3 , a n , a_1,a_2,a_3, \dots a_n, \dots such that, a 1 = 20 a_1=20 , a 2 = 17 a_2=17 and a n = 2 a n 1 a n 2 a n 1 + a n 2 \ a_n= \dfrac{2a_{n-1}a_{n-2}}{a_{n-1}+a_{n-2}} for all n 3 n≥3 .

2 0 2 201 7 2 17 135576 k = 1 1 201 7 k a k 20^2\cdot 2017^2\cdot 17 \cdot 135576⋅ \sum_{k=1}^\infty \frac{1}{2017^ka_k}

What is the remainder when the product above is divided by 1000 1000 ?


For more problems like this, try answering this set .


The answer is 563.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 28, 2017

a n = 2 a n 1 a n 2 a n 1 + a n 2 1 a n = 1 2 ( 1 a n 1 + 1 a n 2 ) Let b n 1 = 1 a n 2 b n 1 = b n 2 + b n 3 Let k = n 1 2 b k = b k 1 + b k 2 \begin{aligned} a_n & = \frac {2a_{n-1}a_{n-2}}{a_{n-1}+a_{n-2}} \\ \implies \frac 1{a_n} & = \frac 12 \left(\frac 1{a_{n-1}} + \frac 1{a_{n-2}} \right) & \small \color{#3D99F6} \text{Let }b_{n-1} = \frac 1{a_n} \\ 2b_{n-1} & = b_{n-2} + b_{n-3} & \small \color{#3D99F6} \text{Let }k=n-1 \\ 2b_k & = b_{k-1} + b_{k-2} \end{aligned}

The characteristic equation of the linear recurrence relation of sequence { b n } \{b_n\} is given below.

2 r 2 r 1 = 0 ( 2 r + 1 ) ( r 1 ) = 0 r = 1 2 , 1 b k = c 1 ( 1 2 ) k + c 2 b 0 = 1 a 1 c 1 + c 2 = 1 20 c 1 2 + c 2 = b 1 = 1 a 2 = 1 17 c 1 = 1 170 c 2 = 19 340 b k = 19 340 1 170 ( 1 2 ) k \begin{aligned} 2r^2 - r - 1& = 0 \\ (2r+1)(r-1) & = 0 \\ \implies r & = - \frac 12, \ 1 \\ \implies b_k & = c_1\left(-\frac 12\right)^k + c_2 \\ b_0 & = \frac 1{a_1} \\ c_1 + c_2 & = \frac 1{20} \\ - \frac {c_1}2 + c_2 & = b_1 = \frac 1{a_2} = \frac 1{17} \\ \implies c_1 & = - \frac 1{170} \\ c_2 & = \frac {19}{340} \\ \implies b_k & = \frac {19}{340} - \frac 1{170}\left(-\frac 12\right)^k \end{aligned}

Now we have:

k = 1 1 201 7 k a k = k = 0 b k 201 7 k + 1 = 1 2017 ( 19 340 k = 0 1 201 7 k 1 170 k = 0 ( 1 4034 ) k ) = 1 2017 ( 19 340 ( 1 1 1 2017 ) 1 170 ( 1 1 + 1 4034 ) ) = 1 2017 ( 19 340 ( 2017 2016 ) 1 170 ( 4034 4035 ) ) = 19 340 2016 1 85 4035 = 22867 921916800 \begin{aligned} \sum_{k=1}^\infty \frac 1{2017^ka_k} & = \sum_{k=0}^\infty \frac {b_k}{2017^{k+1}} \\ & = \frac 1{2017} \left( \frac {19}{340}\sum_{k=0}^\infty \frac 1{2017^k} - \frac 1{170}\sum_{k=0}^\infty \left(\frac {-1}{4034}\right)^k\right) \\ & = \frac 1{2017} \left( \frac {19}{340}\left(\frac 1{1-\frac 1{2017}}\right) - \frac 1{170}\left(\frac 1{1+\frac 1{4034}}\right)\right) \\ & = \frac 1{2017} \left( \frac {19}{340}\left(\frac {2017}{2016}\right) - \frac 1{170}\left(\frac {4034}{4035}\right)\right) \\ & = \frac {19}{340\cdot 2016} - \frac 1{85\cdot 4035} \\ & = \frac {22867}{921916800} \end{aligned}

X = 2 0 2 201 7 2 17 135576 k = 1 1 201 7 k a k = 2 0 2 201 7 2 17 135576 22867 921916800 = 201 7 2 22867 = 1 7 2 867 (mod 1000) = 289 ( 133 ) (mod 1000) = 437 (mod 1000) = 563 (mod 1000) \begin{aligned} \implies X & = 20^2\cdot 2017^2\cdot 17 \cdot 135576 \cdot \sum_{k=1}^\infty \frac 1{2017^ka_k} \\ & = 20^2\cdot 2017^2\cdot 17 \cdot 135576 \cdot \frac {22867}{921916800} \\ & = 2017^2 \cdot 22867 \\ & = 17^2 \cdot 867 \text{ (mod 1000)} \\ & = 289(-133) \text{ (mod 1000)} \\ & = -437 \text{ (mod 1000)} \\ & = \boxed{563} \text{ (mod 1000)} \end{aligned}

Christian Daang
Jun 30, 2017

By Using the Iterative Formula Above, (This Solution Is So Hard and Long. )

a 1 = 20 a 2 = 17 a 3 = 2 ( 20 ) ( 17 ) 20 + 17 = 2 3 5 17 37 a 4 = 2 4 5 1 7 2 37 17 ( 37 + ( 2 3 5 ) 37 ) = 2 4 5 17 77 a 5 = 2 8 5 2 1 7 2 77 37 2 3 5 17 ( 77 + ( 2 37 ) 37 77 ) = 2 5 5 17 77 + ( 2 37 ) a 6 = 2 10 5 2 1 7 2 77 ( 77 + ( 2 37 ) ) 2 4 5 17 ( 77 + ( 2 37 ) + ( 2 77 ) ( 77 + ( 2 37 ) ) 77 ) = 2 6 5 17 77 + ( 2 37 ) + ( 2 77 ) \begin{aligned} a_1 &= 20 \\ a_2 &= 17 \\ a_3 &= \dfrac{2(20)(17)}{20+17} = \dfrac{2^3 \cdot 5 \cdot 17}{37} \\ a_4 &= \dfrac{\dfrac{2^4 \cdot 5 \cdot 17^2}{37}}{17\left(\dfrac{37 + (2^3\cdot5)}{37}\right)} = \dfrac{2^4 \cdot 5 \cdot 17}{77} \\ a_5 &= \dfrac{\dfrac{2^8 \cdot 5^2 \cdot 17^2}{77\cdot37}}{2^3\cdot5\cdot17\left(\dfrac{77+(2\cdot37)}{37\cdot77}\right)} = \dfrac{2^5 \cdot 5 \cdot 17}{77+(2\cdot37)} \\ a_6 &= \dfrac{\dfrac{2^{10} \cdot 5^2 \cdot 17^2}{77\cdot(77+(2\cdot37))}}{2^4\cdot5\cdot17\left(\dfrac{77+(2\cdot37)+(2\cdot77)}{(77+(2\cdot37))\cdot77}\right)} = \dfrac{2^6 \cdot 5 \cdot 17}{77+(2\cdot37)+(2\cdot77)} \\ \vdots\end{aligned}

k = 1 1 201 7 k a k = 1 2017 20 + 1 201 7 2 17 + S \displaystyle \sum_{k = 1}^{\infty} \dfrac{1}{2017^ka_k} = \dfrac{1}{2017\cdot20} + \dfrac{1}{2017^2\cdot17} + S

where S = 37 201 7 3 2 3 85 + 77 201 7 4 2 4 85 + 77 + ( 2 37 ) 201 7 5 2 5 85 + 77 + ( 2 37 ) + ( 2 77 ) 201 7 6 2 6 85 + S = \dfrac{37}{2017^3\cdot2^3\cdot85} + \dfrac{77}{2017^4\cdot2^4\cdot85} + \dfrac{77+(2\cdot37)}{2017^5\cdot2^5\cdot85} + \dfrac{77+(2\cdot37)+(2\cdot77)}{2017^6\cdot2^6\cdot85} + \cdots

Multiplying S S by 4034 4034 and subtracting the result to S S yields:

4033 S = 37 201 7 2 2 2 85 + 40 201 7 3 2 3 85 + 2 ( S 4034 ) 8134560 2017 S = 1 403 4 2 85 74649 2017 S = 24883 403 4 2 85 2711520 k = 1 1 201 7 k a k = 1 2017 ( 1 20 + 1 2017 17 + 24883 8068 85 20 135576 ) 4033S = \dfrac{37}{2017^2\cdot2^2\cdot85} + \dfrac{40}{2017^3\cdot2^3\cdot85} + 2\left(\dfrac{S}{4034}\right) \implies \dfrac{8134560}{2017}S = \dfrac{1}{4034^2\cdot85} \cdot \dfrac{74649}{2017} \\ \implies S = \dfrac{24883}{4034^2\cdot85\cdot2711520} \\ \displaystyle \implies \sum_{k = 1}^{\infty} \dfrac{1}{2017^ka_k} = \dfrac{1}{2017} \left( \dfrac{1}{20} + \dfrac{1}{2017\cdot17} + \dfrac{24883}{8068\cdot85\cdot20\cdot135576}\right)

2 0 2 201 7 2 17 135576 1 2017 ( 1 20 + 1 2017 17 + 24883 8068 85 20 135576 ) = ( 20 2017 17 135576 + 20 20 135576 + 24883 ) m o d 1000 ( 20 17 17 576 + 20 20 576 + 883 ) ( 280 + 400 + 883 ) 563 \begin{aligned} \implies 20^2\cdot 2017^2\cdot 17 \cdot 135576 \cdot \dfrac{1}{2017} \left( \dfrac{1}{20} + \dfrac{1}{2017\cdot17} + \dfrac{24883}{8068\cdot85\cdot20\cdot135576}\right) &= \begin{pmatrix} 20\cdot2017\cdot17\cdot135576 \\ + 20\cdot20\cdot135576 \\ + 24883 \end{pmatrix} \bmod 1000 \\ &\equiv \begin{pmatrix} 20\cdot17\cdot17\cdot576 \\ + 20\cdot20\cdot576 \\ + 883 \end{pmatrix} \\ &\equiv \begin{pmatrix} 280 \\ + 400 \\ + 883 \end{pmatrix} \equiv \ \boxed{563} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...