Is the information sufficient 5?

Calculus Level 3

f ( n ) = { 2017 for n = 1 f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n ) n 2 for n > 1 f(n) = \begin{cases} 2017 & \text{for } n = 1 \\ \dfrac{f(1) + f(2) + f(3) + \cdots + f(n)}{n^2} & \text{for } n > 1 \end{cases}

A function f f is defined as above for all positive integers n n . Find lim n n 2 f ( n ) + 2016 11 \dfrac { \displaystyle \lim_{n \to \infty} n^2f(n) + 2016}{11} .


For more problems like this, try answering this set .


The answer is 550.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sándor Daróczi
Jun 29, 2017

Relevant wiki: Telescoping Series - Product

First we are going to prove by induction that f ( n ) = 2 f ( 1 ) n ( n + 1 ) f(n) = \frac{2f(1)}{n(n+1)} . This is obviously clear for n = 1 n=1 .

Considering the case n = 2 n=2 we obtain

f ( 2 ) = f ( 1 ) + f ( 2 ) 2 2 f(2)=\frac{f(1) + f(2)}{2^2}

3 f ( 2 ) = f ( 1 ) 3f(2)=f(1)

f ( 2 ) = f ( 1 ) 3 f(2)=\frac{f(1)}{3} ,

so our statement is true for n = 2 n=2 too. Assuming that the induction hypothesis is proven for all positive integers k < n k<n with n > 2 n>2 we have from the definition

( n 1 ) ( n + 1 ) f ( n ) = ( n 2 1 ) f ( n ) = i = 1 n 1 f ( i ) = i = 1 n 1 2 f ( 1 ) i ( i + 1 ) = 2 f ( 1 ) i = 1 n 1 1 i ( i + 1 ) = 2 f ( 1 ) i = 1 n 1 ( 1 i 1 i + 1 ) = 2 f ( 1 ) ( 1 1 n ) = 2 f ( 1 ) n 1 n (n-1)(n+1)f(n) = (n^2-1)f(n) = \displaystyle \sum_{i=1}^{n-1} f(i) = \displaystyle \sum_{i=1}^{n-1} \frac{2f(1)}{i(i+1)} = 2f(1) \displaystyle \sum_{i=1}^{n-1} \frac{1}{i(i+1)} = 2f(1) \displaystyle \sum_{i=1}^{n-1} (\frac{1}{i} - \frac{1}{i+1}) = 2f(1)(1 - \frac{1}{n}) = 2f(1) \frac{n-1}{n} ,

since the terms of the telescoping series cancel out. Thus we obtain f ( n ) = 2 f ( 1 ) n 1 n ( n 1 ) ( n + 1 ) = 2 f ( 1 ) n ( n + 1 ) f(n) = 2f(1) \frac{n-1}{n(n-1)(n+1)} = \frac{2f(1)}{n(n+1)} hence our induction is complete.

Using this result for n > 1 n>1 we get

lim n n 2 f ( n ) = lim n 2 f ( 1 ) n 2 n ( n + 1 ) = 2 f ( 1 ) lim n 1 1 + 1 n = 2 f ( 1 ) = 4034 \lim_{n \to \infty} n^2f(n) = \lim_{n \to \infty} 2f(1) \frac{n^2}{n(n+1)} = 2f(1) \lim_{n \to \infty} \frac{1}{1+ \frac{1}{n}} = 2f(1) = 4034 .

Thus ultimately our answer is 4034 + 2016 11 = 550 \frac{4034 + 2016}{11} = 550 .

Chew-Seong Cheong
Jun 29, 2017

f ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n ) n 2 n 2 f ( n ) = k = 1 n f ( k ) ( n + 1 ) 2 f ( n + 1 ) = k = 1 n + 1 f ( k ) ( n + 1 ) 2 f ( n + 1 ) n 2 f ( n ) = k = 1 n + 1 f ( k ) k = 1 n f ( k ) ( n 2 + 2 n + 1 ) f ( n + 1 ) n 2 f ( n ) = f ( n + 1 ) n ( n + 2 ) f ( n + 1 ) = n 2 f ( n ) f ( n + 1 ) = n n + 2 f ( n ) f ( 2 ) = 1 3 f ( 1 ) f ( 3 ) = 2 4 1 3 f ( 1 ) f ( 4 ) = 3 5 2 4 1 3 f ( 1 ) = f ( n ) = k = 1 n 1 k k + 2 f ( 1 ) = k = 1 n 1 2017 k k + 2 = 4034 ( n 1 ) ! ( n + 1 ) ! = 4034 n ( n + 1 ) = 4034 n 2 + n \begin{aligned} f(n) & = \frac {f(1)+f(2)+f(3)+ \cdots + f(n)}{n^2} \\ n^2 f(n) & = \sum_{k=1}^n f(k) \\ (n+1)^2 f(n+1) & = \sum_{k=1}^{n+1} f(k) \\ (n+1)^2 f(n+1) - n^2 f(n) & = \sum_{k=1}^{n+1} f(k) - \sum_{k=1}^n f(k) \\ (n^2+2n+1) f(n+1) - n^2 f(n) & = f(n+1) \\ n(n+2)f(n+1) & = n^2 f(n) \\ \implies f(n+1) & = \frac n{n+2}f(n) \\ f(2) & = \frac 13 f(1) \\ f(3) & = \frac 24 \cdot \frac 13 f(1) \\ f(4) & = \frac 35 \cdot \frac 24 \cdot \frac 13 f(1) \\ \cdots \ & = \ \cdots \\ \implies f(n) & = \prod_{k=1}^{n-1} \frac k{k+2}f(1) = \prod_{k=1}^{n-1} \frac {2017k}{k+2} = \frac {4034(n-1)!}{(n+1)!} \\ & = \frac {4034}{n(n+1)} = \frac {4034}{n^2+n} \end{aligned}

lim n n 2 f ( n ) = lim n 4034 n 2 n 2 + n = lim n 4034 1 + 1 n = 4034 lim n n 2 f ( n ) + 2016 11 = 4034 + 2016 11 = 550 \begin{aligned} \implies \lim_{n \to \infty} n^2f(n) & = \lim_{n \to \infty} \frac {4034n^2}{n^2+n} = \lim_{n \to \infty} \frac {4034}{1+\frac 1n} = 4034 \\ \implies \frac {\displaystyle \lim_{n \to \infty} n^2f(n)+2016}{11} & = \frac {4034+2016}{11} = \boxed{550} \end{aligned}

I think, you mean

f ( n ) = k = 1 n 1 k k + 2 f ( 1 ) = 4034 ( n 1 ) ! ( n + 1 ) ! f(n) = \prod_{k = 1}^{n - 1} \dfrac{k}{k + 2} f(1) \\ = 4034\dfrac{(n-1)!}{(n+1)!}

in the 12th line.

Christian Daang - 3 years, 11 months ago

Log in to reply

Thanks. I have corrected it.

Chew-Seong Cheong - 3 years, 11 months ago

Log in to reply

No Problem Sir. :D

Christian Daang - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...