Classical Inequalities addicts can do this. Part 5

Algebra Level 3

If a a and c c are real numbers, determine the maximum value of k k such that the maximum value of b b that satisfy the system of equations below is an integer.

{ a 2 + b 2 + c 2 = 2016 a + 2 b + 3 c = k \begin{cases} \begin{aligned} a^2 + b^2 + c^2 &= 2016 \\ a + 2b + 3c &= k \end{aligned} \end{cases}


For more problems like this, try answering this set .


The answer is 168.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Jul 11, 2017

{ a 2 + b 2 + c 2 = 2016 a + 2 b + 3 c = k \begin{cases} \begin{aligned} a^2 + b^2 + c^2 &= 2016 \\ a + 2b + 3c &= k \end{aligned} \end{cases}

{ a 2 + c 2 = 2016 b 2 a + 3 c = k 2 b \begin{cases} \begin{aligned} a^2 + c^2 &= 2016 - b^2 \\ a + 3c &= k - 2b \end{aligned} \end{cases}

By Cauchy,
( a + 3 c ) 2 10 ( a 2 + c 2 ) ( k 2 b ) 2 10 ( 2016 b 2 ) k 2 4 k b + 4 b 2 20160 10 b 2 14 b 2 4 k b + ( k 2 20160 ) 0 \begin{aligned} (a+3c)^2 \leq 10(a^2 + c^2) \implies & (k-2b)^2 \leq 10(2016-b^2) \\ &k^2 - 4kb + 4b^2 \leq 20160-10b^2 \\ &14b^2 - 4kb + (k^2 - 20160) \leq 0\end{aligned}

By quadratic formula, we have: 4 k 1128960 40 k 2 28 b 4 k + 1128960 40 k 2 28 \dfrac{4k - \sqrt{1128960 - 40k^2}}{28} \leq b \leq \dfrac{4k + \sqrt{1128960 - 40k^2}}{28} \cdot

Note that: 1128960 40 k 2 0 168 k 168 1128960 - 40k^2 \geq 0 \implies -168 \leq k \leq 168 \cdot

Trying k = 168 k = 168 yields 14 ( b 24 ) 2 0 b 24 max ( b ) = 24 14(b - 24)^2 \leq 0 \implies b \leq 24 \implies \max(b) = 24 which is an integer, which means, max ( k ) = 168 \max(k) = 168 will suffice the condition above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...