I Was Very Amazed At The Solution 10

Geometry Level 3

Evaluate:

x = 45 89 cot ( x ) x = 46 89 ( cot ( 2 x ) + csc ( 2 x ) ) \sum_{x = 45}^{89} \cot(x^\circ) - \sum_{x = 46}^{89} \big(\cot(2x^\circ) + \csc(2x^\circ)\big)


For more problems like this, try this set .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 11, 2017

X = x = 45 89 cot x x = 46 89 ( cot 2 x + csc 2 x ) = cot 4 5 + x = 46 89 ( cot x cot 2 x csc 2 x ) = 1 + x = 46 89 ( cot x 1 tan 2 x 1 sin 2 x ) = 1 + x = 46 89 ( cot x cos 2 x sin 2 x 1 sin 2 x ) = 1 + x = 46 89 ( cot x cos 2 x + 1 sin 2 x ) = 1 + x = 46 89 ( cot x 2 cos 2 x 1 + 1 2 sin x cos x ) = 1 + x = 46 89 ( cot x cos x sin x ) = 1 + x = 46 89 ( cot x cot x ) = 1 \begin{aligned} X & = \sum_{\color{#3D99F6}x=45}^{89} \cot x^\circ - \sum_{\color{#D61F06}x=46}^{89} \left(\cot 2x^\circ + \csc 2x^\circ \right) \\ & = \cot 45^\circ + \sum_{\color{#D61F06}x=46}^{89} \left( \cot x^\circ - \cot 2x^\circ - \csc 2x^\circ \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \frac 1{\tan 2x^\circ} - \frac 1{\sin 2x^\circ} \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \frac {\cos 2x^\circ}{\sin 2x^\circ} - \frac 1{\sin 2x^\circ} \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \frac {\cos 2x^\circ+1}{\sin 2x^\circ} \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \frac {2\cos^2x^\circ-1+1}{2\sin x^\circ\cos x^\circ} \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \frac {\cos x^\circ}{\sin x^\circ} \right) \\ & = 1 + \sum_{x=46}^{89} \left( \cot x^\circ - \cot x^\circ \right) \\ & = \boxed{1} \end{aligned}

Christian Daang
Jul 11, 2017

This is the story where the problem comes from.

1 sec ( x ) 1 dx = cos ( x ) 1 cos ( x ) dx = ( 1 + 1 1 cos ( x ) ) dx = x + 1 1 cos ( x ) dx = x + 1 + cos ( x ) sin 2 ( x ) dx = x + csc 2 ( x ) dx + cot ( x ) csc ( x ) dx = x cot ( x ) csc ( x ) + C \begin{aligned} \int \dfrac{1}{\sec(x) - 1} \ \text{dx} &= \int \dfrac{\cos(x)}{1 - \cos(x)} \ \text{dx} \\ &= \int \left( -1 + \dfrac{1}{1 - \cos(x)} \right) \ \text{dx} \\ &= -x + \int \dfrac{1}{1 - \cos(x)} \ \text{dx} \\ &= -x + \int \dfrac{1 + \cos(x)}{\sin^2 (x) } \ \text{dx} = -x + \int \csc^2 (x) \ \text{dx} + \int \cot(x) \csc(x) \ \text{dx} \\ &= -x - \cot(x) - \csc(x) + C \end{aligned}

Meanwhile, the answer and solution of this problem to other sites is different. They use tangent-half angle substitution and double angle formula and obtaining x cot ( x 2 ) + C -x - \cot\left(\dfrac{x}{2}\right) + C \cdot Since the 2 answers came from the same integrand, the answers must be equivalent and hence, cot ( x ) + csc ( x ) = cot ( x 2 ) + C \cot(x) + \csc(x) = \cot\left( \dfrac{x}{2} \right) + C \cdot Putting any value for x x , you will obtain C = 0 cot ( x ) + csc ( x ) = cot ( x 2 ) , C = 0 \implies \cot(x) + \csc(x) = \cot\left( \dfrac{x}{2} \right) \ , and by induction, cot ( 2 x ) + csc ( 2 x ) = cot ( x ) cot ( 2 x ) csc ( 2 x ) + cot ( x ) = 0 x = 45 89 cot ( x ) x = 46 89 ( cot ( 2 x ) + csc ( 2 x ) ) = cot ( 45 ) = 1 \cot(2x) + \csc(2x) = \cot(x) \implies -\cot(2x) -\csc(2x) +\cot(x) = 0 \implies \displaystyle \sum_{x = 45}^{89} \cot(x) - \sum_{x = 46}^{89} \big(\cot(2x) + \csc(2x)\big) = \cot(45) = \boxed{1} \cdot

Ahmad Saad
Jul 11, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...