I Was Very Amazed At The Solution 6

Calculus Level 5

I = 0 e x 2 cos ( 10 x ) d x . \large I= \int_0^∞ e^{-x^2}\cos(10x) \ dx .

For I I as defined above, evaluate ln ( 2 I π ) \left|\ln\left(\dfrac{2I}{\sqrt{π}}\right)\right| .

Notation: |\cdot| denotes the absolute value function .


For more problems like this, try this set .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

For a , b > 0 a,b>0 ,

e b x a x 2 d x = e b 2 / 4 a e a ( x b 2 a ) 2 = e b 2 / 4 a π a \displaystyle \begin{aligned} \int_{-\infty}^{\infty} e^{bx-ax^2}\; dx &= e^{b^2/4a}\int_{-\infty}^{\infty} e^{-a\left(x-\dfrac{b}{2a}\right)^2} \\ &= e^{b^2/4a}\sqrt{\dfrac{\pi}{a}}\end{aligned}

where the last line follows from the result of a generalized Gaussian integral. Now ,

e a x 2 cos ( b x ) d x = 1 2 ( e a x 2 + i b x d x + e a x 2 i b x d x ) = e a x 2 + i b x d x = e ( i b ) 2 / 4 a π a \displaystyle \begin{aligned} \int_{-\infty}^{\infty} e^{-ax^2}\cos(bx)\; dx&=\frac12\left( \int_{-\infty}^{\infty} e^{-ax^2+ibx}\;dx + \int_{-\infty}^{\infty} e^{-ax^2-ibx}\; dx\right) \\ &= \int_{-\infty}^{\infty} e^{-ax^2+ibx}\; dx \\ &= \dfrac{e^{(ib)^2/4a}\sqrt{\pi}}{\sqrt{a}}\end{aligned}

Thus we have ,

0 e a x 2 cos ( b x ) d x = 1 2 e b 2 / 4 a π a \displaystyle \int_{0}^{\infty} e^{-ax^2}\cos(bx)\; dx=\dfrac{1}{2e^{b^2/4a}}\sqrt{\dfrac{\pi}{a}}

Putting in a = 1 , b = 10 a=1,b=10 we have the answer as I = π 2 e 25 \displaystyle I=\dfrac{\sqrt{\pi}}{2e^{25}} making the answer 25 \boxed{25}

Christian Daang
Jun 20, 2017

Let F ( α ) = 0 e x 2 cos ( α x ) d x \displaystyle F(\alpha) = \int_0^{\infty} e^{-x^2} \cos(\alpha x) dx

By Differentiating under the Integral Sign with respect to α \alpha ,

d F d α = 0 e x 2 x sin ( α x ) d x \displaystyle \implies \dfrac{dF}{d\alpha} = \int_0^{\infty} e^{-x^2} \cdot - x\sin(\alpha x) dx

Integrating by parts, that is f ( x ) g ( x ) = f ( x ) g ( x ) f ( x ) g ( x ) \displaystyle \int f'(x)g(x) = f(x)g(x) - \int f(x)g'(x) with f ( x ) = x e x 2 f ( x ) = e x 2 2 , g ( x ) = sin ( α x ) g ( x ) = α cos ( α x ) f'(x) = -xe^{-x^2} \implies f(x) = \dfrac{e^{-x^2}}{2} \ , \ g(x) = \sin(\alpha x) \implies g'(x) = \alpha \cos(\alpha x)

d F d α = [ e x 2 2 sin ( α x ) ] 0 α 2 0 e x 2 cos ( α x ) d x \displaystyle \implies \dfrac{dF}{d\alpha} = \left[\dfrac{e^{-x^2}}{2} \cdot \sin(\alpha x) \right]_0^{\infty} - \dfrac{\alpha}{2} \cdot \int_0^{\infty} e^{-x^2} \cos(\alpha x) dx

e x 2 2 sin ( α x ) \displaystyle \dfrac{e^{-x^2}}{2} \cdot \sin(\alpha x) will approach 0 at both limits, hence we are left with:

d F d α = α 2 F d F F = α 2 d α ln ( F ) = α 2 4 + C F ( α ) = g e α 2 4 , g = e C \displaystyle \dfrac{dF}{d\alpha} = - \dfrac{\alpha}{2} F \\ \implies \dfrac{dF}{F} = - \dfrac{\alpha}{2} d\alpha \\ \implies \ln(F) = - \dfrac{\alpha ^2}{4} + C \implies F(\alpha) = ge^{\frac{-\alpha ^2}{4}} \ , \ g = e^C

Setting α = 0 \alpha = 0

F ( 0 ) = 0 e x 2 d x = g = π 2 F ( α ) = π 2 e α 2 4 \displaystyle \implies F(0) = \int_0^{\infty} e^{-x^2} dx = g = \dfrac{\sqrt{\pi}}{2} \implies F(\alpha) = \dfrac{\sqrt{\pi}}{2}e^{\frac{-\alpha ^2}{4}}

Setting α = 10 \alpha = 10

F ( 10 ) = I = 0 e x 2 cos ( 10 x ) d x = π 2 e 25 ln ( 2 I π ) = 25 \implies F(10) = I = \int_0^{\infty} e^{-x^2} \cos(10 x) dx = \dfrac{\sqrt{\pi}}{2}e^{-25} \\ \therefore \left|\ln\left(\dfrac{2I}{\sqrt{π}}\right)\right| = \boxed{25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...