No Way Out Of It

Algebra Level 4

( 16 x 200 + 1 ) ( y 200 + 1 ) = 16 ( x y ) 100 (16x^{200} +1)(y^{200} + 1) = 16(xy)^{100}

Find the number of real solutions to the equation above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sathvik Acharya
May 30, 2021

( 16 x 200 + 1 ) ( y 200 + 1 ) = 16 ( x y ) 100 , x , y R (16x^{200}+1)(y^{200}+1)=16(xy)^{100}\;,\;\; x,y\in \mathbb{R} Let x 100 = a x^{100}=a and y 100 = b y^{100}=b , where a , b a,b are non-negative reals. So, we have, ( 16 a 2 + 1 ) ( b 2 + 1 ) = 16 a b 16 a 2 b 2 + 16 a 2 + b 2 + 1 = 16 a b \begin{aligned} (16a^2+1)(b^2+1)&=16ab \\ 16a^2b^2+16a^2+b^2+1&=16ab \end{aligned} Applying AM-GM inequality on the terms 16 a 2 b 2 , 16 a 2 , b 2 , 1 16a^2b^2,\;16a^2,\;b^2,\;1 : 16 a 2 b 2 + 16 a 2 + b 2 + 1 4 16 a 2 b 2 16 a 2 b 2 1 4 = 4 a b \frac{16a^2b^2+16a^2+b^2+1}{4}\ge \sqrt[{4}]{16a^2b^2\cdot 16a^2\cdot b^2\cdot1}=4ab 16 a 2 b 2 + 16 a 2 + b 2 + 1 16 a b \implies 16a^2b^2+16a^2+b^2+1\ge 16ab\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\; Since 16 a 2 b 2 + 16 a 2 + b 2 + 1 = 16 a b , \; 16a^2b^2+16a^2+b^2+1=16ab, from the equality condition of AM-GM inequality, 16 a 2 b 2 = 16 a 2 = b 2 = 1 ( a , b ) = ( 1 4 , 1 ) 16a^2b^2=16a^2=b^2=1 \; \implies (a,b)=\left(\frac{1}{4},1\right) ( x , y ) { ( 1 4 100 , 1 ) , ( 1 4 100 , 1 ) , ( 1 4 100 , 1 ) , ( 1 4 100 , 1 ) } \therefore \; (x,y)\in \left \{\left(\sqrt[100]{\frac{1}{4}},1\right),\; \left(\sqrt[100]{\frac{1}{4}},-1\right),\; \left(-\sqrt[100]{\frac{1}{4}},1\right),\; \left(-\sqrt[100]{\frac{1}{4}},-1\right)\right\} Therefore, there are 4 \boxed{4} pairs of reals ( x , y ) (x,y) that satisfy the given equation.

Chew-Seong Cheong
May 30, 2021

( 16 x 200 + 1 ) ( y 200 + 1 ) = 16 ( x y ) 100 ( 16 x 200 + 1 ) y 200 16 x 100 y 100 + 16 x 200 + 1 = 0 y 100 = 8 x 100 ± ( 16 x 200 1 ) 2 16 x 200 + 1 For real x , ( 16 x 200 1 ) 2 0 = 8 x 100 ± ( 16 x 200 1 ) i 16 x 200 + 1 \begin{aligned} (16x^{200}+1)(y^{200}+1) & = 16(xy)^{100} \\ (16x^{200}+1)y^{200} - 16x^{100}y^{100} + 16x^{200}+1 & = 0 \\ \implies y^{100} & = \frac {8x^{100} \pm \sqrt{-(16x^{200}-1)^2}}{16x^{200}+1} & \small \blue{\text{For real }x, (16x^{200}-1)^2 \ge 0} \\ & = \frac {8x^{100} \pm (16x^{200}-1)i}{16x^{200}+1} \end{aligned}

For y y to be real,

16 x 200 1 = 0 ( 4 x 100 1 ) ( 4 x 100 + 1 ) = 0 ( 2 x 50 1 ) ( 2 x 50 + 1 ) ( 4 x 100 + 1 ) = 0 x = ± 1 2 50 For real x { x = 1 2 50 y = 1 x = 1 2 50 y = 1 x = 1 2 50 y = 1 x = 1 2 50 y = 1 \begin{aligned} \implies 16x^{200} - 1 & = 0 \\ (4x^{100}-1)(4x^{100} + 1) & = 0 \\ (2x^{50}-1)(2x^{50}+1)(4x^{100} + 1) & = 0 \\ \implies x & = \pm \frac 1{\sqrt[50] 2} & \small \blue{\text{For real }x} \end{aligned} \\ \implies \begin{cases} x = \dfrac 1{\sqrt[50]2} & y = 1 \\ x = \dfrac 1{\sqrt[50]2} & y = - 1 \\ x = - \dfrac 1{\sqrt[50]2} & y = 1 \\ x = - \dfrac 1{\sqrt[50]2} & y = - 1 \end{cases}

Therefore there are 4 \boxed 4 real solutions.

Carsten Meyer
Jun 1, 2021

For simplicity, let X : = 4 x 100 X:=4x^{100} and Y : = y 100 Y:=y^{100} with X , Y 0 X,\:Y\geq 0 . Then the equation simplifies to 4 X Y = ( 1 + X 2 ) ( 1 + Y 2 ) \begin{aligned} 4XY&=(1+X^2)(1+Y^2) \end{aligned} We check the cases X = 0 X=0 and Y = 0 Y=0 and notice they can never be a solution, so we have X , Y > 0 X,\:Y>0 and may divide by X Y XY : X , Y > 0 : 4 = ( X + X 1 ) ( Y + Y 1 ) = ( 2 + ( X 1 2 X 1 2 ) 2 ) ( 2 + ( Y 1 2 Y 1 2 ) 2 ) \begin{aligned} X,\:Y&>0:&&& 4&=(X + X^{-1})(Y+Y^{-1})=\left( 2+\Bigl(X^{\frac{1}{2}}-X^{-\frac{1}{2}}\Bigr)^2 \right)\left( 2+\Bigl(Y^{\frac{1}{2}}-Y^{-\frac{1}{2}}\Bigr)^2 \right) \end{aligned} The cases X 1 X\neq 1 or Y 1 Y\neq 1 can never lead to a solution, as the product on the right will be greater than 4 4 . The remaining case X = Y = 1 X=Y=1 leads to solutions ( x , y ) { ( ± 2 50 , ± 1 ) } = : M M = 4 (x,\:y)\in \left\{(\pm 2^{-50},\:\pm 1)\right\}=:M \quad\Rightarrow\quad |M|=\boxed{4}

Kushal Dey
May 30, 2021

Let a,b be real numbers. Then we can have, (ab-1)²+(a-b)²>=0 => a²b²+a²+b²+1>=4ab => (a²+1)(b²+1)>=4ab. Equality holds if a-b=0 and ab=1 => a=b=1. Put a=4x¹⁰⁰,b=y¹⁰⁰ to get given inequality. Since x,y have even powers they can also have negative values, thus 4 total solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...