No Words

Calculus Level 4

n = 0 n 3 2 n = ? \large \displaystyle \sum_{n=0}^{\infty} \dfrac {n^3}{2^n} = \; ?


The answer is 26.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 8, 2017

Consider for x < 1 |x|<1 :

n = 0 x n = 1 1 x \sum_{n=0}^{\infty} x^n= \dfrac{1}{1-x} Differentiate w.r.t x x and multiply by x x on both sides:

n = 0 n x n = x ( 1 x ) 2 = 1 ( 1 x ) 2 1 1 x \sum_{n=0}^{\infty} nx^n=\dfrac{x}{(1-x)^2}=\dfrac{1}{(1-x)^2}-\dfrac{1}{1-x}

Differentiate w.r.t x x and multiply by x x on both sides:

n = 0 n 2 x n = 2 x ( 1 x ) 3 x ( 1 x ) 2 = 2 ( 1 x ) 3 3 ( 1 x ) 2 + 1 1 x \begin{aligned}\sum_{n=0}^{\infty} n^2 x^n=&\dfrac{2x}{(1-x)^3}-\dfrac{x}{(1-x)^2}\\=&\dfrac{2}{(1-x)^3}-\dfrac{3}{(1-x)^2}+\dfrac{1}{1-x}\end{aligned}

Differentiate w.r.t x x and multiply by x x on both sides:

n = 0 n 3 x n = 6 x ( 1 x ) 4 6 x ( 1 x ) 3 + x ( 1 x ) 2 \sum_{n=0}^{\infty}n^3 x^n=\dfrac{6x}{(1-x)^4}-\dfrac{6x}{(1-x)^3}+\dfrac{x}{(1-x)^2}

Put x = 1 2 x=\dfrac 12 to get:

n = 0 n 3 2 n = 26 \displaystyle \sum_{n=0}^{\infty} \dfrac {n^3}{2^n}=\boxed{\color{#D61F06}26}


A l t e r n a t e M e t h o d \Large \color{cyan}{\mathcal{Alternate~Method}}

Z = n = 0 n 3 2 n = 1 2 + 8 2 2 + 27 2 3 + 64 2 4 + Z 2 = 1 2 2 + 8 2 3 + 27 2 4 + \begin{aligned}\mathfrak Z= \displaystyle \sum_{n=0}^{\infty} \dfrac {n^3}{2^n}=\dfrac{1}{2}+&\dfrac{8}{2^2}+\dfrac{27}{2^3}+\dfrac{64}{2^4}+\cdots\\\dfrac{\mathfrak Z}{2}=~~~~~~~~~~~~~~~~~~~~~~~~&\dfrac{1}{2^2}+\dfrac{8}{2^3}+\dfrac{27}{2^4}+\cdots\end{aligned}

Subtracting we get:

Z 2 = 1 2 + 7 2 2 + 19 2 3 + 37 2 4 + Z 4 = 1 2 2 + 7 2 3 + 19 2 4 + \begin{aligned}\dfrac{\mathfrak Z}{2}=\dfrac{1}{2}+&\dfrac{7}{2^2}+\dfrac{19}{2^3}+\dfrac{37}{2^4}+\cdots\\\dfrac{\mathfrak Z}{4}=~~~~~~~~&\dfrac{1}{2^2}+\dfrac{7}{2^3}+\dfrac{19}{2^4}+\cdots\end{aligned}

Subtracting we get:

Z 4 = 1 2 + 6 2 2 + 12 2 3 + 18 2 4 + Z 8 = 1 2 2 + 6 2 3 + 12 2 4 + \begin{aligned}\dfrac{\mathfrak Z}{4}=\dfrac{1}{2}+&\dfrac{6}{2^2}+\dfrac{12}{2^3}+\dfrac{18}{2^4}+\cdots\\\dfrac{\mathfrak Z}{8}=~~~~~~~~~~~&\dfrac{1}{2^2}+\dfrac{6}{2^3}+\dfrac{12}{2^4}+\cdots \end{aligned}

Subtracting we get:

Z 8 = 1 2 + 5 2 2 + 6 2 3 + 6 2 4 \dfrac{\mathfrak Z}{8}=\dfrac{1}{2}+\dfrac{5}{2^2}+\dfrac{6}{2^3}+\dfrac{6}{2^4}\cdots Z = 4 + 10 + 6 [ 1 + 1 2 + 1 4 + ] Infinite GP = 4 + 10 + 6 ( 2 ) = 26 \begin{aligned}\implies \mathfrak Z=&4+10+6\overbrace{\left[1+\dfrac{1}{2}+\dfrac{1}{4}+\cdots\right]}^{\color{#3D99F6}{\text{Infinite GP}}}\\=&4+10+6(2)=\boxed{\color{#D61F06}26}\end{aligned}

Awesome solution ....

Sudhamsh Suraj - 4 years, 5 months ago

Very Elegant Solution. But how can we differentiate a sum? What is the reason behind it?

Achal Jain - 4 years, 5 months ago

Log in to reply

As long as a sum is differentiated in its interval of convergence (here |x|<1) ( and provided it is differentiable) , we can do differentiation in a summation form (differentiation under summation i.e ( a x ) = ( a x ) \left(\displaystyle \sum a_x\right)'=\displaystyle\sum (a_x)' ) rather than performing it term by term.

Rishabh Jain - 4 years, 5 months ago

Log in to reply

There are a few more conditions that you have to check other than just that the sum exists.

Essentially, it asks "When can we swap the order of differentiation (which is a limit) and the infinite summation (which is another limit)"?

Calvin Lin Staff - 4 years, 5 months ago
Ashwath Bhat
Jan 14, 2017

Consider n = 0 n 3 2 n \sum_{n=0}^\infty\frac{n^{3}}{2^{n}} .

Since the first term is 0, it can be written as n = 1 n 3 2 n \sum_{n=1}^\infty\frac{n^{3}}{2^{n}} , or n = 0 ( n + 1 ) 3 2 n + 1 \sum_{n=0}^\infty\frac{(n+1)^{3}}{2^{n+1}} .

Expanding ( n + 1 ) 3 (n+1)^{3} , it can be written as n = 0 n 3 2 n + 3 n = 0 n 2 2 n + 3 n = 0 n 2 n + n = 0 1 2 n 2 \frac{\sum_{n=0}^\infty\frac{n^{3}}{2^{n}} + 3\sum_{n=0}^\infty\frac{n^{2}}{2^{n}} + 3\sum_{n=0}^\infty\frac{n}{2^{n}} + \sum_{n=0}^\infty\frac{1}{2^{n}}}{2} .

It simplifies to 2 + 3 n = 0 n 2 2 n + 3 n = 0 n 2 n 2 + 3\sum_{n=0}^\infty\frac{n^{2}}{2^{n}} + 3\sum_{n=0}^\infty\frac{n}{2^{n}} .

Similarly, n = 0 n 2 2 n = 2 + 2 n = 0 n 2 n \sum_{n=0}^\infty\frac{n^{2}}{2^{n}} = 2 + 2\sum_{n=0}^\infty\frac{n}{2^{n}} .

Further, taking n = 0 n 2 n \sum_{n=0}^\infty\frac{n}{2^{n}} as n = 1 n 2 n \sum_{n=1}^\infty\frac{n}{2^{n}} and so on, we get n = 0 n 2 n = 2 \sum_{n=0}^\infty\frac{n}{2^{n}} = 2 .

Thus by substituting, we get n = 0 n 3 2 n = 26 \sum_{n=0}^\infty\frac{n^{3}}{2^{n}} = 26 .

Same method

Jason Chrysoprase - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...