Non-homogeneous ODE (fixed)

Calculus Level pending

Solve the non-homogeneous differential equation below.

{ y + 10 y + 29 y = 3538 ( sin ( 2 t ) cos ( 2 t ) + cos 2 ( 2 t ) sin 2 ( 2 t ) ) y ( 0 ) = 16 y ( 0 ) = 386 \begin{cases} y'' + 10y' + 29y = 3538 \big(\sin(2t) \cos (2t) + \cos^2 (2t) - \sin^2 (2t)\big) \\ y(0) = -16 \\ y'(0) = 386 \end{cases}

If y ( π 2 ) = A e B π A 7 A y \left(\frac \pi 2\right) = Ae^{\frac {B\pi}A} - 7A , where A A and B B are integers, enter A B AB .


The answer is -10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Solving the given differential equation we get y = 93 sin 4 t 14 cos 4 t + A e 5 t sin ( 2 t + α ) y=93\sin 4t-14\cos 4t+Ae^{-5t}\sin (2t+α) , where A A and α α are constants of integration. Substituting the initial conditions we get A = 2 2 , α = π 4 A=2\sqrt 2, α=-\dfrac{π}{4} . Hence y ( π 2 ) = 14 + 2 e 5 π 2 y(\dfrac{π}{2})=-14+2e^{-\dfrac{5π}{2}} . So A = 2 , B = 5 A=2, B=-5 and A B = 10 AB=\boxed {-10} .

The partial solution to the homogeneous form of the differential equation is given by:

y " + 10 y + 29 y = 0 ( r 2 + 10 r + 29 ) e r x = 0 r = 5 ± 2 i where i = 1 is the imaginary unit. \begin{aligned} y"+10y' +29y & = 0 \\ (r^2 + 10r+29)e^{rx} & = 0 \\ \implies r & = -5 \pm 2i & \small \blue{\text{where }i=\sqrt{-1} \text{ is the imaginary unit.}} \end{aligned}

y 1 ( x ) = c 1 e 5 x sin 2 x + c 2 e 5 x cos 2 x where c 1 and c 2 are constants. \begin{aligned} \implies y_1 (x) & = c_1 e^{-5x}\sin 2x + c_2 e^{-5x} \cos 2x & \small \blue{\text{where }c_1 \text{ and } c_2 \text{ are constants.}} \end{aligned}

Since y " + 10 y + 29 y = 3538 ( sin 2 x cos 2 x + cos 2 2 x sin 2 2 x ) = 1769 sin 4 x + 3538 cos 4 x y"+10y' +29y = 3538(\sin 2x \cos 2x + \cos^2 2x - \sin^2 2x) = 1769\sin 4x + 3538 \cos 4x , assuming the special solution be y 2 ( x ) = C sin 4 x + D cos 4 x y_2(x) = C\sin 4x + D \cos 4x , where C C and D D are constants. Then y 2 = 4 C cos 4 x 4 D sin 4 x y_2' = 4C \cos 4x - 4D \sin 4x , y 2 = 16 C sin 4 x 16 D cos 4 x = 16 y 2 y_2'' = - 16 C\sin 4x - 16 D \cos 4x = -16 y_2 , and

y 2 + 10 y 2 + 29 y 2 = 1769 sin 4 x + 3538 cos 4 x 10 ( 4 C cos 4 x 4 D sin 4 x ) + 13 ( C sin 4 x + D cos 4 x ) = 1769 sin 4 x + 3538 cos 4 x \begin{aligned} y_2'' + 10y_2' + 29y_2 & = 1769\sin 4x + 3538 \cos 4x \\ 10(4C\cos 4x - 4D \sin 4x) + 13(C\sin 4x + D\cos 4x) & = 1769\sin 4x + 3538 \cos 4x \end{aligned}

Equating the coefficients on both sides:

{ 13 C 40 D = 1769 40 C + 13 D = 3538 C = 93 , D = 14 y 2 ( x ) = 93 sin 4 x 14 cos 4 x \begin{cases} 13C - 40D = 1769 \\ 40C + 13D = 3538 \end{cases} \implies C = 93, \ D= -14 \\ \implies y_2(x) = 93 \sin 4x - 14 \cos 4x

Therefore the general solution of the differential equation is:

y ( x ) = c 1 e 5 x sin 2 x + c 2 e 5 x cos 2 x + 93 sin 4 x 14 cos 4 x y ( π 2 ) = c 2 e 5 π 2 14 As y ( 0 ) = c 2 14 = 16 c 2 = 2 = 2 e 5 π 2 14 \begin{aligned} y(x) & = c_1 e^{-5x}\sin 2x + c_2 e^{-5x} \cos 2x + 93 \sin 4x - 14 \cos 4x \\ \implies y \left(\frac \pi 2\right) & = -c_2 e^{-\frac {5\pi}2} - 14 \quad \quad \small \blue{\text{As }y(0) = c_2 - 14 = - 16 \implies c_2 = - 2} \\ & = 2e^{-\frac {5\pi}2} - 14 \end{aligned}

Therefore A B = ( 2 ) ( 5 ) = 10 AB = (2)(-5) = \boxed{-10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...