Non-Linear Differential Equation

Calculus Level 4

1 4 ( y ) 2 1 2 y = y 2 y \large \frac{1}{4}(y')^2 - \frac{1}{2}y' = y^2 - y

The non-linear differential equation above admits two non-zero solutions y 1 y_1 and y 2 y_2 . Suppose that y 1 ( 0 ) = y 2 ( 0 ) = 2 y_1(0) = y_2(0) = 2 .

What is y 1 ( 1 ) + y 2 ( 1 ) y_1(1) + y_2(1) ?


The answer is 15.913.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Mendrin
Nov 9, 2015

This quickly factors as follows, into two easily solved first order differential equations

1 4 ( y ) 2 y 2 = ( 1 2 y + y ) ( 1 2 y y ) = 1 2 y y \dfrac { 1 }{ 4 } { \left( y' \right) }^{ 2 }-{ y }^{ 2 }=\left( \dfrac { 1 }{ 2 } y'+y \right) \left( \dfrac { 1 }{ 2 } y'-y \right) =\dfrac { 1 }{ 2 } y'-y

The art of solving differential equations is still too much like alchemy, too much depends on luck

Thanks for bringing up a discussion @Michael Mendrin . I'll pick up where you left off!

Case I: 1 2 y y = 0 \dfrac { 1 }{ 2 } y'-y = 0 . In this case, we can solve using separation of variable methods . 1 2 y y = 0 d y y = 2 d x ln ( y ) = 2 x + C y = C e 2 x \frac { 1 }{ 2 } y'-y = 0 \longrightarrow \frac{dy}{y} = 2dx \longrightarrow \ln(y) = 2x + C \longrightarrow y = Ce^{2x} In this instance, y ( 0 ) = 2 y(0) = 2 implies that our first non-trivial solution is y 1 = 2 e 2 x y_1 = 2e^{2x} .

Case II: 1 2 y y 0 \dfrac { 1 }{ 2 } y'-y \neq 0 . In this case, we safely divide through by 1 2 y y \dfrac { 1 }{ 2 } y'-y , which returns the equation 1 2 y + y = 1 \dfrac { 1 }{ 2 } y'+y = 1 . Using the method of separation of variables again we can easily find y 2 y_2 :

1 2 y + y = 1 d y 1 y = 2 d x ln 1 y = 2 x + C y = C e 2 x + 1 \frac { 1 }{ 2 } y'+y = 1 \longrightarrow \frac{dy}{1 - y} = 2dx \longrightarrow -\ln\left|1 - y\right| = 2x + C \longrightarrow y = Ce^{-2x} + 1

Here, y ( 0 ) = 2 y(0) = 2 implies that our second non-trivial solution is y 2 = e 2 x + 1 y_2 = e^{-2x} + 1 . So our final answer is

y 1 ( 1 ) + y 2 ( 1 ) = 2 e 2 + e 2 + 1 15.913 y_1(1) + y_2(1) = 2e^2 + e^{-2} + 1 \approx \boxed{15.913}

Andrew Ellinor - 5 years, 7 months ago

Log in to reply

What I can say is that if, for example, that 1 4 \dfrac {1}{4} was 1 3 \dfrac {1}{3} instead, this thing would just blow up. I'd hate to try to imagine the full solution.

Michael Mendrin - 5 years, 7 months ago
Tom Engelsman
Mar 4, 2017

Let u = y u = y' and multiply the DE through by 4 to obtain:

u 2 2 u 4 ( y 2 y ) = 0 u = 2 ± 4 + 16 ( y 2 y ) 2 = 2 ± 2 4 y 2 4 y + 1 2 = 1 ± ( 2 y 1 ) 2 = 1 ± ( 2 y 1 ) u^2 - 2u - 4(y^2 - y) = 0 \Rightarrow u = \frac{2 \pm \sqrt{4 + 16(y^2 - y)}}{2} = \frac{2 \pm 2\sqrt{4y^2 - 4y + 1}}{2} = 1 \pm \sqrt{(2y-1)^2} = 1 \pm (2y - 1)

or y = 2 y , 2 2 y y' = 2y, 2 - 2y . Integrating both DE's now produces:

l n y 1 ( x ) = 2 x + C 1 ; y 1 ( 0 ) = 2 C 1 = l n ( 2 ) y 1 ( x ) = 2 e 2 x ln|y_1(x)| = 2x + C_1; y_1(0) = 2 \Rightarrow C_1 = ln(2) \Rightarrow y_1(x) = 2e^{2x}

l n 1 y 2 ( x ) = 2 x + C 2 ; y 2 ( 0 ) = 2 C 2 = 0 y 2 ( x ) = 1 + e 2 x -ln|1-y_2(x)| = 2x + C_2; y_2(0) = 2 \Rightarrow C_2 = 0 \Rightarrow y_2(x) = 1 + e^{-2x}

Finally, y 1 ( 1 ) + y 2 ( 1 ) = 2 e 2 + 1 + e 2 15.913 . y_1(1) + y_2(1) = 2e^2 + 1 + e^{-2} \approx \boxed{15.913}.

You missed a third solution the constant function y=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...