Let a , b > 0 and 2 a 2 − b 2 > 0 .
d t d x = a 2 x + a 2 y − b 2 x ( x 2 + y 2 )
d t d y = − a 2 x + a 2 y − b 2 y ( x 2 + y 2 )
The nonlinear system above has the solution x = x ( t ) , y = y ( t ) , where x ( t = 0 ) = y ( t = 0 ) = 2 1 .
If ∫ a 2 1 ( ln ( b 2 a 2 − b 2 ) ) a 2 1 ( ln ( b 3 ( 2 a 2 − b 2 ) ) ) x ( t ) 2 + y ( t ) 2 d t = a b 1 ln ( α + λ α + β )
where α , β , and λ are coprime positive integers, find α + β + λ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
d t d x = a 2 x + a 2 y − b 2 x ( x 2 + y 2 )
d t d y = − a 2 x + a 2 y − b 2 y ( x 2 + y 2 )
Converting to polar coordinates, let x = r cos ( θ ) , y = r sin ( θ ) x 2 + y 2 = r 2 and θ = arctan ( x y )
Taking the derivatives with respect to t :
x 2 + y 2 = r 2 ⟹ r d t d r = x d t d x + y d t d y
and
θ = arctan ( x y ) ⟹ r 2 d t d θ = x d t d y − y d t d x
( 1 ) : x ∗ ( d t d x = a 2 x + a 2 y − b 2 x ( x 2 + y 2 ) )
( 2 ) : y ∗ ( d t d y = − a 2 x + a 2 y − b 2 y ( x 2 + y 2 ) )
and adding ( 1 ) and ( 2 ) we obtain:
r d t d r = r 2 ( a 2 − b 2 r 2 ) ⟹ d t d r = r ( a 2 − b 2 r 2 )
( 3 ) : − y ∗ ( d t d x = a 2 x + a 2 y − b 2 x ( x 2 − y 2 ) )
( 4 ) : x ∗ ( d t d y = − a 2 x + a 2 y − b 2 ( x 2 − y 2 ) )
and adding ( 3 ) and 4 we obtain:
d t d θ = − a 2
The system of differentials above has a single critical point at r = 0 . For r > 0 , the system above reduces to:
d t d r = r ( a 2 − b 2 r 2 )
d t d θ = − a 2
⟹ a 2 1 ∫ ( r 1 + 2 ( a − b r ) b − 2 ( a + b r ) b ) d r = a 2 1 ln ( a 2 − b 2 r 2 r ) = t + C ⟹
a 2 − b 2 r 2 r 2 = C e 2 a 2 t ⟹ r = b 2 + C e − 2 a 2 t a and θ = − a 2 t + t 0 .
Using initial conditions x ( t = 0 ) = y ( t = 0 ) = 2 1 , where r ( 0 ) = x ( 0 ) 2 + y ( 0 ) 2 ⟹ b 2 + C a = 2 1 ⟹ C = 2 a 2 − b 2
Let β = a 2 1 ( ln ( b 2 a 2 − b 2 ) ) and α = a 2 1 ( ln ( b 3 ( 2 a 2 − b 2 ) ) )
For I = ∫ β α r ( t ) d t = a ∫ β α 2 a 2 − b 2 + ( b e a 2 t ) 2 e a 2 t
Let b e a 2 t = 2 a 2 − b 2 tan θ ⟹ d t = a 2 tan θ sec 2 ( θ ) d θ
and for α we have tan ( θ ) = 3 and for β we have tan ( θ ) = 1 ⟹
I = a b 1 ∫ 4 π 3 π sec θ d θ =
a b 1 ln ( sec θ + tan θ ) ∣ 4 π 3 π =
a b 1 ln ( 2 + 1 2 + 3 ) = a b 1 ln ( α + λ α + β ) ⟹ α + β + λ = 6