Nonlinear ODE

Calculus Level 3

{ d y d x = y x ( y + 1 ) y ( 1 ) = 1 \begin{cases} \begin{aligned} \dfrac {dy}{dx} & = \dfrac y{x(y+1)} \\ y(1) & = 1 \end{aligned} \end{cases}

Given the differential equation above, solve for y y .

Notation: W ( ) W(\cdot) denotes the Lambert W-function .

W ( e x ) W(ex) W ( e 2 x ) W(e^2x) W ( x e ) W \left(\frac xe\right) e 2 x e^2x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 17, 2019

d y d x = y x ( y + 1 ) y + 1 y d y = 1 x d x y + ln y = ln x + C where C = ln c 1 is the constant of integration. y = W ( c 1 x ) where W ( ) denotes the Lambert W-function. y ( 1 ) = 1 Given y ( 1 ) = ln c 1 = 1 From y + ln y = ln x + ln c 1 c 1 = e y ( x ) = W ( e x ) \begin{aligned} \frac {dy}{dx} & = \frac y{x(y+1)} \\ \int \frac {y+1}y \ dy & = \int \frac 1x \ dx \\ y + \ln y & = \ln x + \blue C & \small \blue{\text{where }C = \ln c_1 \text{ is the constant of integration.}} \\ y & = W(c_1x) & \small \blue{\text{where }W(\cdot) \text{ denotes the Lambert W-function.}} \\ y(1) & = 1 & \small \blue{\text{Given}} \\ \implies y(1) & = \ln c_1 = 1 & \small \blue{\text{From }y + \ln y = \ln x + \ln c_1} \\ c_1 & = e \\ \implies y(x) & = \boxed{W(ex)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...