Non-stoppin' inspirations

Algebra Level 3

1 2 ! + 2 3 ! + 3 4 ! + + n 1 n ! = ? \large \dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+\cdots +\dfrac{n-1}{n!} = \, ?

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

( n + 1 ) ! n ! \frac{(n+1)!}{n!} 1 1 n ! 1-\frac{1}{n!} 1 ( n 1 ) ! n ! \frac{(n-1)!}{n!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 13, 2016

M = r = 2 n ( r 1 ) r ! \Large \mathfrak{M}=\displaystyle\sum_{r=2}^n\dfrac{(r-1)}{r!} = r = 2 n ( 1 ( r 1 ) ! 1 r ! ) \Large =\displaystyle\sum_{r=2}^n\left(\dfrac{1}{(r-1)!}-\dfrac{1}{r!}\right) ( A T e l e s c o p i c S e r i e s ) \large\mathbf{\color{#0C6AC7}{(A~Telescopic~Series)}} ( 1 1 2 ! ) + ( 1 2 ! 1 3 ! ) + ( 1 3 ! 1 4 ) + + ( 1 ( n 1 ) ! 1 n ! ) \large \left(1-\cancel{\color{#D61F06}{\dfrac{1}{2!}}}\right)+\left(\cancel{\color{#D61F06}{\dfrac{1}{2!}}}-\cancel{\color{#456461}{\dfrac{1}{3!}}}\right)+\left(\cancel{\color{#456461}{\dfrac{1}{3!}}}-\cancel{\color{#EC7300}{\dfrac{1}{4}}}\right)+ \cdots+\left(\cancel{\color{skyblue}{\dfrac{1}{(n-1)!}}}-\dfrac{1}{n!}\right) = 1 1 n ! \huge =1-\dfrac{1}{n!}

Aditya Sky
Mar 24, 2016

Say given sum is S S . Clearly, S = m = 1 n 1 m ( m + 1 ) ! S = \large\sum_{m=1}^{n-1}\frac{m}{(m+1)!} = m = 1 n 1 m + 1 1 ( m + 1 ) ! = m = 1 n 1 1 ( m ) ! 1 ( m + 1 ) ! = \large\sum_{m=1}^{n-1}\frac{m +1 -1 }{(m+1)!} = \large\sum_{m=1}^{n-1}\frac{1}{(m)!} - \frac{1}{(m+1)!} = ( 1 1 ! 1 2 ! ) + ( 1 2 ! 1 3 ! ) + ( 1 3 ! 1 4 ! ) + + ( 1 ( n 2 ) ! 1 ( n 1 ) ! ) + ( 1 ( n 1 ) ! 1 ( n ) ! ) = \left(\frac{1}{1!}\,-\, \frac{1}{2!} \right) \,+\, \left(\frac{1}{2!}\,-\, \frac{1}{3!} \right) \,+\, \left(\frac{1}{3!}\,-\, \frac{1}{4!} \right) \,+\, \cdot \cdot \cdot \,+\,\left(\frac{1}{(n-2)!}\,-\, \frac{1}{(n-1)!} \right) \,+\, \left(\frac{1}{(n-1)!}\,-\, \frac{1}{(n)!} \right) Hence, S = 1 1 n ! S\,=\,1\,-\ \frac{1}{n!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...