Any die is modeled by some polyhedron. If the polyhedron is completely symmetric in the sense that any face can be taken to any other face via a rigid motion, then the die will be fair; when the die is rolled, the probability of landing on any face will equal the probability of landing on any other face.
Do there exist fair dice that are not completely symmetric?
Hint : Start with a prism whose cross-sections are regular -gons. Now consider the dual polyhedron , the polyhedron whose vertices are the centers of the faces of the original prism. This looks like two pyramids with regular -gon cross-sections that have been glued together at their bases. Now, can you modify to obtain a fair die that isn't completely symmetric?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
No explanations have been posted yet. Check back later!