(Non-symmetric) inequality

Algebra Level 1

Positive real numbers x x and y y are such that x + y = 1 x+y=1 . Find the minimum value of the expression below. 5 x y + 1 x y 5xy+\frac{1}{xy}


Inspiration


The answer is 5.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let us consider the function m x y + 1 x y mxy +\dfrac{1}{xy} , where m > 0 m>0 . Then, since x + y = 1 y = 1 x x+y=1\implies y=1-x ,

the function can be reduced to one in a single variable x x :

m x ( 1 x ) + 1 x ( 1 x ) = m 4 m ( x 1 2 ) 2 + 4 1 4 ( x 1 2 ) 2 mx(1-x)+\dfrac{1}{x(1-x)}=\dfrac{m}{4}-m(x-\frac{1}{2})^2+\dfrac{4}{1-4(x-\frac{1}{2})^2}

= m + 16 4 + ( x 1 2 ) 2 ( 4 m ( x 1 2 ) 2 + 16 m ) 1 4 ( x 1 2 ) 2 =\dfrac{m+16}{4}+\dfrac{(x-\frac{1}{2})^2\left (4m(x-\frac{1}{2})^2+16-m\right )}{1-4(x-\frac{1}{2})^2} .

Now x 1 4 ( x 1 2 ) 2 1 1 4 ( x 1 2 ) 2 0 x\leq 1\implies 4(x-\frac{1}{2})^2\leq 1\implies 1-4(x-\frac{1}{2})^2\geq 0 .

Hence, for 0 < m 16 0<m\leq 16 , m x y + 1 x y m + 16 4 mxy+\dfrac{1}{xy}\geq \dfrac{m+16}{4} .

In this case, 0 < m = 5 < 16 0<m=5<16 , and the minimum is 5 + 16 4 = 21 4 = 5.25 \dfrac{5+16}{4}=\dfrac{21}{4}=\boxed {5.25} .

Chan Lye Lee
Jun 13, 2020

I will use differentiation to get the answer.

Let A = 5 x y + 1 x y = 5 x ( 1 x ) + 1 x ( 1 x ) = 5 x ( 1 x ) + 1 x + 1 1 x A=5xy+\frac{1}{xy} = 5x(1-x) + \frac{1}{x(1-x)} = 5x(1-x) + \frac{1}{x} +\frac{1}{1-x} . Then

d A d x = 5 10 x 1 x 2 + 1 ( 1 x ) 2 = 5 ( 2 x 1 ) + 2 x 1 x 2 ( x 1 ) 2 = ( 2 x 1 ) ( 1 x 2 ( x 1 ) 2 5 ) \frac{dA}{dx} = 5-10x -\frac{1}{x^2} + \frac{1}{\left(1-x\right)^2} = -5\left(2x-1\right) + \frac{2x-1}{x^2 \left(x-1\right)^2} = \left(2x-1\right) \left( \frac{1}{x^2 \left(x-1\right)^2}-5 \right)

As 0 < x < 1 0<x<1 , d A d x = 0 \frac{dA}{dx}=0 if and only if x = 1 2 x=\frac{1}{2} .

Now d 2 A d x 2 = 10 + 2 x 3 + 2 ( 1 x ) 3 > 0 0 < x < 1 \frac{d^2A}{dx^2}=-10 + \frac{2}{x^3} + \frac{2}{\left(1-x\right)^3} >0 \, \, \forall \, 0<x<1

Thus A A is minimum if x = 1 2 x=\frac{1}{2} . Hence the minimum value of A A is 5 ( 1 2 ) ( 1 2 ) + 1 ( 1 2 ) ( 1 2 ) = 5.25 5\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\frac{1}{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} = \boxed{5.25} .


*Remarks:

Interestingly, if 0 < m < 16 0<m<16 and the positive real numbers x x and y y are such that x + y = 1 x+y=1 , then the minimum value of m x y + 1 x y mxy+\frac{1}{xy} always occurs at x = y = 1 2 x=y=\frac{1}{2} .

@Chan Lye Lee - Can you also write the remark with a proof, it will be better.

Zakir Husain - 12 months ago

@Zakir Husain Thanks for your suggestion. I wish to leave it as an exercise for reader, as everything is the same except changing 5 to m m .

Chan Lye Lee - 12 months ago

@Chan Lye Lee - Your remark doesn't work for m > 16 m>16

Zakir Husain - 11 months, 4 weeks ago

Log in to reply

@Zakir Husain Thanks for alerting me. I did not do the calculation carefully. Will edit the remark.

Chan Lye Lee - 11 months, 4 weeks ago
Davidhero Han
Jun 23, 2020

U s i n g A M G M x + y 2 x y ( 1 2 ) 2 x y ( 1 ) 5 4 5 x y ( 2 ) u s i n g ( 1 ) t o 1 ( 1 4 ) 1 x y 1 4 1 x y ( 3 ) S u m ( 2 ) a n d ( 3 ) 21 4 5 x y + 1 x y m i n ( 5 x y + 1 x y ) = 21 4 Using\ AM-GM\\ \frac{x+y}{2} \geq \sqrt[]{xy}\\ (\frac{1}{2})^2 \geq xy\ \ \ \mathbf{(1)}\\ \frac{5}{4} \geq 5xy\ \ \ \mathbf{(2)}\\ using\ (1)\ to\ -1\\ (\frac{1}{4})^{-1} \geq xy^{-1}\\ 4 \geq \frac{1}{xy}\ \ \ \mathbf{(3)}\\ Sum\ (2)\ and\ (3)\\ \frac{21}{4} \geq 5xy + \frac{1}{xy} \\ min\left ( 5xy + \frac{1}{xy} \right ) = \frac{21}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...