Find the value of so that limit of the function above is some non-zero real number as . If the value of can be expressed as , where and are coprime integers, submit your answer as .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We use 3 x + h − 3 x + k = ( 3 x + h ) 2 + 3 x + h 3 x + k + ( 3 x + k ) 2 ( 3 x + h − 3 x + k ) ( ( 3 x + h ) 2 + 3 x + h 3 x + k + ( 3 x + k ) 2 ) = ( 3 x + h ) 2 + 3 x + h 3 x + k + ( 3 x + k ) 2 h − k
a few times to write
[Note: The following can be made simpler by selectively using asymptotics. In fact, that was my original method, but the rules for doing so are often misunderstood, so I've written out all the steps exactly here, even if it's quite messy.]
3 x + 1 + 3 x − 1 − 2 3 x = ( 3 x + 1 − 3 x ) − ( 3 x − 3 x − 1 ) = ( 3 x + 1 ) 2 + 3 x + 1 3 x + ( 3 x ) 2 1 − ( 3 x ) 2 + 3 x 3 x − 1 + ( 3 x − 1 ) 2 1 = ( ( 3 x + 1 ) 2 + 3 x + 1 3 x + ( 3 x ) 2 ) ( ( 3 x ) 2 + 3 x 3 x − 1 + ( 3 x − 1 ) 2 ) ( ( 3 x ) 2 + 3 x 3 x − 1 + ( 3 x − 1 ) 2 ) − ( ( 3 x + 1 ) 2 + 3 x + 1 3 x + ( 3 x ) 2 ) = ( 3 x − 1 − 3 x + 1 ) ( ( 3 x + 1 ) 2 + 3 x + 1 3 x + ( 3 x ) 2 ) ( ( 3 x ) 2 + 3 x 3 x − 1 + ( 3 x − 1 ) 2 ) 3 x + 1 + 3 x + 3 x − 1 = ( ( 3 x − 1 ) 2 + 3 x − 1 3 x + 1 + ( 3 x + 1 ) 2 ) ( ( 3 x + 1 ) 2 + 3 x + 1 3 x + ( 3 x ) 2 ) ( ( 3 x ) 2 + 3 x 3 x − 1 + ( 3 x − 1 ) 2 ) − 2 ( 3 x + 1 + 3 x + 3 x − 1 ) = x − 5 / 3 ⋅ ( ( 3 1 − x 1 ) 2 + 3 1 − x 1 3 1 + x 1 + ( 3 1 + x 1 ) 2 ) ( ( 3 1 + x 1 ) 2 + 3 1 + x 1 + 1 ) ( 1 + 3 1 − x 1 + ( 3 1 − x 1 ) 2 ) − 2 ( 3 1 + x 1 + 1 + 3 1 − x 1 )
Therefore x → ∞ lim x p ( 3 x + 1 + 3 x − 1 − 2 3 x ) = x → ∞ lim x p − 3 5 ⋅ x → ∞ lim ( ( 3 1 − x 1 ) 2 + 3 1 − x 1 3 1 + x 1 + ( 3 1 + x 1 ) 2 ) ( ( 3 1 + x 1 ) 2 + 3 1 + x 1 + 1 ) ( 1 + 3 1 − x 1 + ( 3 1 − x 1 ) 2 ) − 2 ( 3 1 + x 1 + 1 + 3 1 − x 1 ) = x → ∞ lim x p − 3 5 ⋅ 3 3 − 2 ( 3 ) = ⎩ ⎪ ⎨ ⎪ ⎧ 0 − 9 2 − ∞ p < 3 5 p = 3 5 p > 3 5
Therefore the answer is a + b = 5 + 3 = 8