Nonlinear DE with Exact Solution

Calculus Level 4

Consider the homogeneous IVP (initial value problem) differentiate equation:

{ y + ( 1 x + e + y ) y = 0 y ( 0 ) = 0 y ( 0 ) = 1 e \begin{cases} y''+\left(\dfrac{1}{x+e}+y'\right)y' = 0 \\ y(0) = 0 \\ y'(0) = \dfrac{1}{e} \end{cases}

What is the value of y ( 10 ) y(10) to 5 decimal places?


The answer is 0.93336.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

y + ( 1 x + e + y ) y = 0 Let d y d x = v d 2 y d x 2 = d v d x d v d x + v x + e + v 2 = 0 d v d x + v x + e = v 2 Bernoulli’s equation: y + p ( x ) y = q ( x ) y n 1 v 2 d v d x 1 v ( x + e ) = 1 Let u = 1 v d u d x = 1 v 2 d v d x d u d x u x + e = 1 Linear differential equation: d y d t + p ( t ) y = g ( t ) 1 x + e d u d x u ( x + e ) 2 = 1 x + e Integrating factor: μ ( x ) = e d x x + e = 1 x + e d d x ( u x + e ) = 1 x + e \begin{aligned} y'' + \left(\frac 1{x+e}+y'\right)y' & = 0 &\small \color{#3D99F6} \text{Let }\frac {dy}{dx} = v \implies \frac {d^2y}{dx^2} = \frac {dv}{dx} \\ \frac {dv}{dx} + \frac v{x+e} + v^2 & = 0 \\ \frac {dv}{dx} + \frac v{x+e} & = - v^2 & \small \color{#3D99F6} \text{Bernoulli's equation: }y'' + p(x)y = q(x)y^n \\ -\frac 1{v^2}\cdot \frac {dv}{dx} - \frac 1{v(x+e)} & = 1 & \small \color{#3D99F6} \text{Let }u = \frac 1v \implies \frac {du}{dx} = - \frac 1{v^2} \cdot \frac {dv}{dx} \\ \frac {du}{dx} - \frac u{x+e} & = 1 & \small \color{#3D99F6} \text{Linear differential equation: } \frac {dy}{dt} + p(t) y = g(t) \\ \frac 1{x+e} \cdot \frac {du}{dx} - \frac u{(x+e)^2} & = \frac 1{x+e} & \small \color{#3D99F6} \text{Integrating factor: } \mu(x) = e^{\int - \frac {dx}{x+e}} = \frac 1{x+e} \\ \frac d{dx} \left(\frac u{x+e}\right) & = \frac 1{x+e} \end{aligned}

u x + e = 1 x + e d x = ln ( x + e ) + c 1 where c 1 is the constant of integration. u = 1 v = d x d y = ( x + e ) ( ln ( x + e ) + c 1 ) \begin{aligned} \implies \frac u{x+e} & = \int \frac 1{x+e} dx = \ln (x+e) +\color{#3D99F6} c_1 & \small \color{#3D99F6} \text{where }c_1 \text{ is the constant of integration.} \\ u = \frac 1v = \frac {dx}{dy} & = (x+e)(\ln (x+e) + c_1) \end{aligned}

y = d x ( x + e ) ( ln ( x + e ) + c 1 ) = ln ( ln ( x + e ) + c 1 ) + c 2 where c 2 is the constant of integration. y ( 0 ) = ln ( 1 + c 1 ) + c 2 = 0 . . . ( 1 ) y ( x ) = 1 ( x + e ) ( ln ( x + e ) + c 1 ) y ( 0 ) = 1 e ( 1 + c 1 ) = 1 e c 1 = 0 ; putting in (1) y ( 0 ) = ln ( 1 ) + c 2 = 0 c 2 = 0 y ( x ) = ln ( ln ( x + e ) ) y ( 10 ) = ln ( ln ( 10 + e ) ) 0.933 \begin{aligned} \implies y & = \int \frac {dx}{(x+e)(\ln (x+e) + c_1)} \\ & = \ln(\ln(x+e) + c_1)+\color{#3D99F6}c_2 & \small \color{#3D99F6} \text{where }c_2 \text{ is the constant of integration.} \\ y(0) & = \ln(1 + c_1)+c_2 = 0 & ...(1) \\ y'(x) & = \frac 1{(x+e)(\ln (x+e) + c_1)} \\ y'(0) & = \frac 1{e\color{#3D99F6}(1+c_1)} = \frac 1e & \small \color{#3D99F6} \implies c_1 = 0 \text{; putting in (1)} \\ y(0) & = \ln(1)+c_2 = 0 & \small \color{#3D99F6} \implies c_2 = 0 \\ \implies y(x) & = \ln(\ln(x+e)) \\ y(10) & = \ln(\ln(10+e)) \approx \boxed{0.933} \end{aligned}

Mark Hennings
Jun 2, 2018

The equation becomes d d x [ ln y ( x ) + ln ( x + e ) + y ( x ) ] = y ( x ) y ( x ) + 1 x + e + y ( x ) = 0 \frac{d}{dx}\big[\ln y'(x) + \ln(x+e) + y(x)\big] \; = \; \frac{y''(x)}{y'(x)} + \frac{1}{x+e} + y'(x) \; = \; 0 and hence ln y ( x ) + ln ( x + e ) + y ( x ) = c \ln y'(x) + \ln(x+e) + y(x) \; = \; c for some constant c c . Substituting x = 0 x=0 we see that c = 0 c=0 , and hence ( x + e ) y ( x ) e y ( x ) = 1 (x+e)y'(x) e^{y(x)} \; = \; 1 so that d d x e y ( x ) = y ( x ) e y ( x ) = 1 x + e \frac{d}{dx} e^{y(x)} \; = \; y'(x)e^{y(x)} \; = \; \frac{1}{x+e} and hence e y ( x ) = ln ( x + e ) + d e^{y(x)} \; = \; \ln(x+e) + d for some constant d d . Substituting in x = 0 x=0 we deduce that d = 0 d=0 , so that y ( x ) = ln ( ln ( x + e ) ) y(x) \;= \; \ln(\ln(x+e)) making the answer ln ( ln ( 10 + e ) ) = 0.9333604015 \ln(\ln(10+e)) = \boxed{0.9333604015} .

Leonel Castillo
Jul 26, 2018

Let f ( x ) = 1 x + e f(x) = \frac{1}{x+e} . Thus the equation is y + f y + y 2 = 0 y'' + fy' + y'^2 = 0 . Let's substitute w = y w = y' to reduce the degree of the equation to get w + f w + w 2 = 0 w' + fw + w^2 = 0 . Now, we notice that f f satisfies the differential equation f + f 2 = 0 f' + f^2 = 0 and in the equation we have precisely the terms w + w 2 w' + w^2 so we are being hinted at trying to exploit that property. Consider the substitution w = z f w = zf . Then w = z f + f z w' = z'f + f'z . Then the equation is z f + u ( f + f ) + z 2 f 2 = 0 z f + z 2 f 2 = 0 z + z 2 f = 0 z 2 z = f z'f + u(f' + f) + z^2f^2 = 0 \implies z'f + z^2f^2 = 0 \implies z' + z^2 f = 0 \implies -z^{-2}z' = f .

This is now a separable equation. Integrating both sides we obtain z 1 = log ( x + e ) + C z = 1 log ( x + e ) + C z^{-1} = \log(x+e) + C \implies z = \frac{1}{\log(x+e) + C} . Substituting back to w w , w = 1 ( x + e ) ( log ( x + e ) + C ) w = \frac{1}{(x+e)(\log(x+e) + C)} . But w = y w=y' so we may apply one of the boundary conditions to find the first constant. The condition tells us 1 e = 1 e ( 1 + C ) C = 0 \frac{1}{e} = \frac{1}{e(1 + C)} \implies C = 0 . Now y = 1 ( x + e ) log ( x + e ) y' = \frac{1}{(x+e) \log(x+e)} . We need to compute:

d x ( x + e ) log ( x + e ) \int \frac{dx}{(x+e) \log(x+e)} . Let u = log ( x + e ) u = \log(x+e) , then the integral is d u u \int \frac{du}{u} with solution log ( u ) \log (u) . So y = log log ( x + e ) + D y = \log \log (x+e) + D . Applying the second boundary condition, 0 = 0 + D D = 0 0 = 0 + D \implies D = 0 .

The solution is y = log log ( x + e ) y = \log \log (x+e)

D B
Jun 2, 2018

The solution is y ( x ) = log ( log ( x + e ) ) y(x) = \log(\log(x+e)) . So, y ( 10 ) = log ( log ( 10 + e ) ) 0.93336 y(10) = \log(\log(10+e)) \approx 0.93336

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...