NonLinear Differential.

Calculus Level 4

Let d 2 y d x 2 + d y d x = ( d y d x ) 3 \dfrac{d^2y}{dx^2} + \dfrac{dy}{dx} = (\dfrac{dy}{dx})^3 , where y ( 0 ) = 0 y(0) = 0 and y ( ln ( 2 ) ) = ln ( 1 2 3 ) y(\ln(2)) = \ln(\dfrac{1}{2 - \sqrt{3}}) .

Let y p ( x ) y_{p}(x) be a solution to the above differential equation with the given conditions.

If y p ( ln ( 3 2 ) ) y_{p}(\ln(\dfrac{3}{2})) can be expressed as y p ( ln ( 3 2 ) ) = ln ( a a b c ( a c ) ) y_{p}(\ln(\dfrac{3}{2})) = \ln(\dfrac{a^a - \sqrt{b}}{c(a - \sqrt{c})}) , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 17, 2020

Let d 2 y d x 2 + d y d x = ( d y d x ) 3 \dfrac{d^2y}{dx^2} + \dfrac{dy}{dx} = (\dfrac{dy}{dx})^3

Let z = d y d x d z d x = d 2 y d x 2 z = \dfrac{dy}{dx} \implies \dfrac{dz}{dx} = \dfrac{d^2y}{dx^2} \implies d z d x = z 3 z = z ( z 1 ) ( z + 1 ) \dfrac{dz}{dx} = z^3 - z = z(z - 1)(z + 1) \implies

d z z ( z 1 ) ( z + 1 ) = d x \displaystyle\int \dfrac{dz}{z(z - 1)(z + 1)} = \displaystyle\int dx .

1 z ( z 1 ) ( z + 1 ) = A z + B z 1 + C z + 1 \dfrac{1}{z(z - 1)(z + 1)} = \dfrac{A}{z} + \dfrac{B}{z - 1} + \dfrac{C}{z + 1} \implies

A ( z 2 1 ) + B ( z 2 + z ) + C ( z 2 z ) = 1 A + B + C = 0 , B C = 0 A(z^2 - 1) + B(z^2 + z) + C(z^2 - z) = 1 \implies A + B + C = 0, B - C = 0 and

A = 1 B = 1 2 = C A = -1 \implies B = \dfrac{1}{2} = C \implies

1 z d z + 1 2 ( 1 z 1 + 1 z + 1 ) d z \displaystyle\int -\dfrac{1}{z} dz + \dfrac{1}{2}\displaystyle\int (\dfrac{1}{z - 1} + \dfrac{1}{z + 1}) dz = ln ( z ) + 1 2 ( ln ( z 1 ) + ln ( z + 1 ) ) = = \ln(z) + \dfrac{1}{2}(\ln(z - 1) + \ln(z + 1)) =

ln ( z 2 1 z ) = x + C z 2 1 z = c 1 e 2 x \ln(\dfrac{\sqrt{z^2 - 1}}{z}) = x + C \implies \dfrac{\sqrt{z^2 - 1}}{z} = c_{1}e^{2x} \implies

z 2 1 = z 2 ( c 1 2 e 2 x ) z 2 ( 1 c 1 2 e 2 x ) = 1 z^2 - 1 = z^2(c_{1}^2 e^{2x}) \implies z^2(1 - c_{1}^2 e^{2x}) = 1 z = 1 1 c 1 2 e 2 x \implies z = \dfrac{1}{\sqrt{1 - c_{1}^2 e^{2x}}} \implies

d y d x = 1 1 c 1 2 e 2 x y = d x 1 c 1 2 e 2 x \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - c_{1}^2 e^{2x}}} \implies y = \displaystyle\int \dfrac{dx}{\sqrt{1 - c_{1}^2 e^{2x}}}

Let c 1 e x = sin ( θ ) c 1 e x d x = sin ( θ ) d x = cos ( θ ) d θ c_{1}e^x = \sin(\theta) \implies c_{1}e^x dx = \sin(\theta) dx = \cos(\theta) d\theta \implies d x = cos ( θ ) sin ( θ ) d θ dx = \dfrac{\cos(\theta)}{\sin(\theta)} d\theta \implies

y = csc ( θ ) d θ = ln ( csc ( θ ) cot ( θ ) ) = y = \displaystyle\int \csc(\theta) d\theta = \ln(|\csc(\theta) - \cot(\theta)|) = ln ( 1 1 c 1 2 e 2 x c 1 e x ) + c 2 \ln(|\dfrac{1 - \sqrt{1 - c_{1}^2 e^{2x}}}{c_{1}e^x}|) + c_{2}

y ( x ) = ln ( 1 1 c 1 2 e 2 x c 1 e x ) + c 2 \therefore y(x) = \ln(|\dfrac{1 - \sqrt{1 - c_{1}^2 e^{2x}}}{c_{1}e^x}|) + c_{2} .

y ( 0 ) = 0 y(0) = 0 and y ( ln ( 2 ) ) = ln ( 1 2 3 ) y(\ln(2)) = \ln(\dfrac{1}{2 - \sqrt{3}})

y 0 = 0 c 2 = ln ( c 1 1 1 c 1 2 ) y_{0} = 0 \implies c_{2} = \ln(|\dfrac{c_{1}}{1 - \sqrt{1 - c_{1}^2}}|)

y = ln ( 1 1 c 1 2 e 2 x e x ( 1 1 c 1 2 ) ) \implies y = \ln(|\dfrac{1 - \sqrt{1 - c_{1}^2 e^{2x}}}{e^x(1 - \sqrt{1 - c_{1}^2})}|)

y ( ln ( 2 ) ) = ln ( 1 2 3 ) y(\ln(2)) = \ln(\dfrac{1}{2 - \sqrt{3}}) \implies 1 2 3 = 1 1 c 1 2 e 2 x e x ( 1 1 c 1 2 ) \dfrac{1}{2 - \sqrt{3}} = \dfrac{1 - \sqrt{1 - c_{1}^2 e^{2x}}}{e^x(1 - \sqrt{1 - c_{1}^2})} \implies

2 ( 1 1 c 1 2 ) = ( 2 3 ) ( 1 1 4 c 1 2 ) 2(1 - \sqrt{1 - c_{1}^2}) = (2 - \sqrt{3})(1 - \sqrt{1 - 4c_{1}^2}) \implies

2 1 c 1 2 = 3 ( 2 3 ) 1 4 c 1 2 -2\sqrt{1 - c_{1}^2} = -\sqrt{3} - (2 - \sqrt{3})\sqrt{1 - 4c_{1}^2} \implies

( 2 3 ) 1 4 c 1 2 = 2 1 c 1 2 3 (2 - \sqrt{3})\sqrt{1 - 4c_{1}^2} = 2\sqrt{1 - c_{1}^2} - \sqrt{3} \implies

( 2 3 ) 2 ( 1 4 c 1 2 ) = 7 4 c 1 2 4 3 1 c 1 2 (2 - \sqrt{3})^2(1 - 4c_{1}^2) = 7 - 4c_{1}^2 - 4\sqrt{3}\sqrt{1 - c_{1}^2} \implies

7 4 c 1 2 ( 2 3 ) 2 + 4 ( 2 3 ) 2 c 1 2 = 4 3 1 c 1 2 7 - 4c_{1}^2 - (2 - \sqrt{3})^2 + 4(2 - \sqrt{3})^2c_{1}^2 = 4\sqrt{3}\sqrt{1 - c_{1}^2} \implies

( 4 ( 7 4 3 ) 4 ) c 1 2 + 7 ( 7 4 3 ) = 4 3 1 c 1 2 (4(7 - 4\sqrt{3}) - 4)c_{1}^2 + 7 - (7 - 4\sqrt{3}) = 4\sqrt{3}\sqrt{1 - c_{1}^2} \implies

8 ( 3 2 3 ) c 1 2 + 4 3 = 4 3 1 c 1 2 8(3 - 2\sqrt{3})c_{1}^2 + 4\sqrt{3} = 4\sqrt{3}\sqrt{1 - c_{1}^2} \implies

4 3 ( 2 ( 3 2 ) c 1 2 + 1 ) = 4 3 1 c 1 2 4\sqrt{3}(2(\sqrt{3} - 2)c_{1}^2 + 1) = 4\sqrt{3}\sqrt{1 - c_{1}^2} \implies

2 ( 3 2 ) c 1 2 + 1 = 1 c 1 2 2(\sqrt{3} - 2)c_{1}^2 + 1 = \sqrt{1 - c_{1}^2}

4 ( 3 2 ) 2 c 1 4 + 4 ( 3 2 ) c 1 2 + 1 = 1 c 1 2 4(\sqrt{3} - 2)^2c_{1}^4 + 4(\sqrt{3} - 2)c_{1}^2 + 1 = 1 - c_{1}^2 \implies

4 ( 7 4 3 ) c 1 4 ( 7 4 3 ) c 1 2 = 0 4(7 - 4\sqrt{3})c_{1}^4 - (7 - 4\sqrt{3})c_{1}^2 = 0 \implies

( 7 4 3 ) c 1 2 ( 4 c 1 2 1 ) = 0 (7 - 4\sqrt{3})c_{1}^2(4c_{1}^2 - 1) = 0 and c 1 0 c 1 = ± 1 2 c_{1} \neq 0 \implies c_{1} = \pm\dfrac{1}{2}

y p ( x ) = ln ( 2 4 e 2 x ( 2 3 ) e x ) \implies y_{p}(x) = \ln(|\dfrac{2 - \sqrt{4 - e^{2x}}}{(2 - \sqrt{3})e^x}|)

We don't need the absolute value here so that y p ( x ) = ln ( 2 4 e 2 x ( 2 3 ) e x ) \boxed{y_{p}(x) = \ln(\dfrac{2 - \sqrt{4 - e^{2x}}}{(2 - \sqrt{3})e^x})} , where the

domain D = { x R x ln ( 2 ) } D = \{x \in \mathbb{R} \mid x \leq \ln(2)\} and the range R = { y R y ln ( 1 2 3 ) } R = \{y \in \mathbb{R} \mid y \leq \ln(\dfrac{1}{2 - \sqrt{3}})\} .

Checking y p ( x ) y_{p}(x) :

d y p d x = 2 ( 4 e 2 x ) 1 2 \dfrac{dy_{p}}{dx} = \dfrac{2}{(4 - e^{2x})^{\frac{1}{2}}} \implies d 2 y p d x 2 = 2 e 2 x ( 4 e 2 x ) 3 2 \dfrac{d^2y_{p}}{dx^2} = \dfrac{2e^{2x}}{(4 - e^{2x})^{\frac{3}{2}}}

\implies

d 2 y p d x 2 + d y p d x = 8 ( 4 e 2 x ) 3 2 = ( 2 4 e 2 x ) 3 = \dfrac{d^2y_{p}}{dx^2} + \dfrac{dy_{p}}{dx} = \dfrac{8}{(4 - e^{2x})^{\frac{3}{2}}} = (\dfrac{2}{\sqrt{4 - e^{2x}}})^{3} = ( d y p d x ) 3 (\dfrac{dy_{p}}{dx})^3

and

y p ( 3 2 ) = ln ( 4 7 3 ( 2 3 ) ) = y_{p}(\dfrac{3}{2}) = \ln(\dfrac{4 - \sqrt{7}}{3(2 - \sqrt{3})}) = ln ( 2 2 7 3 ( 2 3 ) ) = \ln(\dfrac{2^2 - \sqrt{7}}{3(2 - \sqrt{3})}) = ln ( a a b c ( a c ) ) \ln(\dfrac{a^a - \sqrt{b}}{c(a - \sqrt{c})})

a + b + c = 12 \implies a + b + c = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...