Nonlinear System of Differential Equations

Calculus Level 5

d x d t = x 2 y z 3 + 0.2 y z \frac{dx}{dt}= \frac{x^2yz}{3} + \frac{0.2}{yz} d y d t = x y 2 z 3 + 0.5 x z \frac{dy}{dt} = \frac{xy^2z}{3} + \frac{0.5}{xz} d z d t = x y z 2 3 + 0.3 x y \frac{dz}{dt} = \frac{xyz^2}{3} + \frac{0.3}{xy}

x ( 0 ) = y ( 0 ) = z ( 0 ) = 1 x(0)=y(0)=z(0)=1

The function p ( t ) p(t) is defined as p ( t ) = x ( t ) y ( t ) p(t) = x(t)y(t) . Find this function. It is of the form:

p ( t ) = 2 A sin D ( B t + C π ) cos E ( B t + C π ) p(t) = 2^{A} \frac{\sin^D(Bt + C \pi)}{ \cos^E(Bt + C \pi)}

If 100 ( A B C D E ) = m n \boxed{100(ABCDE) = \frac{m}{n}} , where m m and n n are co-prime, find m + n \boxed{m+n} .

Inspiration


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 17, 2020

In terms of p p and z z , the differential equations become p ˙ = 2 3 p 2 z + 7 10 z z ˙ = 1 3 p z 2 + 3 10 p \begin{aligned} \dot{p} & = \; \tfrac23p^2z + \tfrac{7}{10z} \\ \dot{z} & = \; \tfrac13pz^2 + \tfrac{3}{10p} \end{aligned} and hence d d t ( p z ) = ( p z ) 2 + 1 \tfrac{d}{dt}(pz) \,=\, (pz)^2 + 1 , which implies that tan 1 ( p z ) = t + c \tan^{-1}(pz) = t+c , for some c c , and hence p z = tan ( t + 1 4 π ) pz = \tan(t+\tfrac14\pi) . But then p ˙ = [ 2 3 tan ( t + 1 4 π ) + 7 10 cot ( t + 1 4 π ) ] p ln p = 2 3 ln ( sec ( t + 1 4 π ) ) + 7 10 ln ( sin ( t + 1 4 π ) ) + d p = U sin 7 10 ( t + 1 4 π ) cos 2 3 ( t + 1 4 π ) \begin{aligned} \dot{p} & = \; \left[\tfrac23\tan(t+\tfrac14\pi) + \tfrac{7}{10}\cot(t + \tfrac14\pi)\right]p \\ \ln p & = \; \tfrac23\ln\big(\sec(t + \tfrac14\pi)\big) + \tfrac{7}{10}\ln\big(\sin(t + \tfrac14\pi)\big) + d \\ p & = \; U \frac{\sin^{\frac{7}{10}}(t + \tfrac14\pi)}{\cos^{\frac23}(t + \tfrac14\pi)} \end{aligned} for constants d , U d,U . The initial conditions give us that U = 2 1 60 U = 2^{\frac{1}{60}} . Thus 100 A B C D E = 100 × 1 60 × 1 × 1 4 × 7 10 × 2 3 = 7 36 100ABCDE = 100 \times \tfrac{1}{60} \times 1 \times \tfrac14 \times \tfrac{7}{10} \times \tfrac23 \; =\; \tfrac{7}{36} making the answer 43 \boxed{43} .

Nice trick! Thanks for sharing

Karan Chatrath - 6 months, 3 weeks ago
Karan Chatrath
Nov 17, 2020

d x d t = x 2 y z 3 + 0.2 y z ( 1 ) \frac{dx}{dt}= \frac{x^2yz}{3} + \frac{0.2}{yz} \ \ \ (1) d y d t = x y 2 z 3 + 0.5 x z ( 2 ) \frac{dy}{dt} = \frac{xy^2z}{3} + \frac{0.5}{xz} \ \ \ (2) d z d t = x y z 2 3 + 0.3 x y ( 3 ) \frac{dz}{dt} = \frac{xyz^2}{3} + \frac{0.3}{xy} \ \ \ (3)

Multiplying (1) by y z yz , (2) by x z xz and (3) by x y xy and adding leads to:

x ˙ y z + x y ˙ z + x y z ˙ = ( x y z ) 2 + 1 \dot{x}yz + x\dot{y}z + xy\dot{z} = (xyz)^2 + 1 d d t ( x y z ) = ( x y z ) 2 + 1 \implies \frac{d}{dt}(xyz) = (xyz)^2 + 1

Let: s = x y z s = xyz . It follows that s ( 0 ) = 1 s(0) = 1 .

d s d t = s 2 + 1 \implies \frac{ds}{dt} = s^2+ 1

Separating the variables, integrating, applying initial conditions and solving for s ( t ) s(t) leads to:

s ( t ) = x y z = tan ( t + π 4 ) s(t) = xyz = \tan\left(t + \frac{\pi}{4}\right)

again consider (1): d x d t = x 2 y z 3 + 0.2 y z ( 1 ) \frac{dx}{dt}= \frac{x^2yz}{3} + \frac{0.2}{yz} \ \ \ (1) x ˙ = ( s 3 + 0.2 s ) x \implies \dot{x} = \left(\frac{s}{3} + \frac{0.2}{s}\right)x x ˙ x = ( s 3 + 0.2 s ) \implies \frac{\dot{x}}{x} = \left(\frac{s}{3} + \frac{0.2}{s}\right) x ˙ x = tan ( t + π 4 ) 3 + 0.2 cot ( t + π 4 ) \implies \frac{\dot{x}}{x} =\frac{ \tan\left(t + \frac{\pi}{4}\right)}{3} + 0.2 \cot\left(t + \frac{\pi}{4}\right) d x x = ( tan ( t + π 4 ) 3 + 0.2 cot ( t + π 4 ) ) d t \implies \frac{dx}{x} = \left(\frac{ \tan\left(t + \frac{\pi}{4}\right)}{3} + 0.2 \cot\left(t + \frac{\pi}{4}\right)\right) \ dt 1 x d a a = 0 t ( tan ( a + π 4 ) 3 + 0.2 cot ( a + π 4 ) ) d a \implies \int_{1}^{x} \frac{da}{a} =\int_{0}^{t} \left(\frac{ \tan\left(a + \frac{\pi}{4}\right)}{3} + 0.2 \cot\left(a + \frac{\pi}{4}\right)\right) \ da

a a is a dummy variable. Similar steps can be performed to solve for y y :

1 y d a a = 0 t ( tan ( a + π 4 ) 3 + 0.5 cot ( a + π 4 ) ) d a \implies \int_{1}^{y} \frac{da}{a} =\int_{0}^{t} \left(\frac{ \tan\left(a + \frac{\pi}{4}\right)}{3} + 0.5 \cot\left(a + \frac{\pi}{4}\right)\right) \ da

Intermediate steps and simplifications are left out in this solution. Multiplying the solutions of x x and y y leads to:

p ( t ) = 2 1 / 60 sin 7 / 10 ( t + π 4 ) cos 2 / 3 ( t + π 4 ) p(t) = 2^{1/60} \frac{\sin^{7/10}\left(t + \frac{\pi}{4}\right)}{\cos^{2/3}\left(t + \frac{\pi}{4}\right)}

And from here, the answer follows. It is 43 \boxed{43} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...