Nonlinear System of Equations

Algebra Level 1

Find the set of solutions to the following system of equations:

{ x 2 + y 2 = 2 x y = 1 \begin{cases} x^2+y^2=2\\ xy=1 \end{cases}

{ ( 1 , 1 ) , ( 1 , 1 ) } \{(1,1),(-1,-1)\} { } \{ \ \} { ( 0 , 0 ) } \{(0,0)\} { ( 2 , 2 ) , ( 2 , 2 ) } \{(2,2),(-2,-2)\}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Michael Huang
Nov 21, 2020

Notice that by squaring the second equation,

x 2 + y 2 = 2 x 2 y 2 = 1 \begin{array}{rl} x^2 + y^2 &= 2\\ x^2y^2 &= 1 \end{array}

Both z 1 = x 2 z_1 = x^2 and z 2 = y 2 z_2 = y^2 can be treated as the solutions to the quadratic equation z 2 2 z + 1 = 0 z^2 - 2z + 1 = 0 , following Vieta's formula. Since that equation can be factored as ( z 1 ) 2 (z - 1)^2 , it has one solution z = 1 z = 1 . Therefore, as the possible solutions for x , y x,y are 1 1 and 1 -1 , the solutions to the given system of equations are ( 1 , 1 ) and ( 1 , 1 ) \boxed{(1,1)}\text{ and }\boxed{(-1,-1)} .

Chew-Seong Cheong
Nov 21, 2020

x 2 + y 2 = 2 From x y = 1 y = 1 x x 2 + 1 x 2 = 2 x 2 2 + 1 x 2 = 0 ( x 1 x ) 2 = 0 x = 1 x \begin{aligned} x^2 + \blue y^2 & = 2 & \small \blue{\text{From }xy = 1 \implies y = \frac 1x} \\ x^2 + \frac 1{x^2} & = 2 \\ x^2 - 2 + \frac 1{x^2} & = 0 \\ \left(x - \frac 1x \right)^2 & = 0 \\ x & = \frac 1x \end{aligned}

x = { + 1 y = 1 x = 1 1 y = 1 x = 1 ( x , y ) = { ( 1 , 1 ) , ( 1 , 1 ) } \begin{aligned} \implies x & = \begin{cases} +1 & \implies y = \dfrac 1x = 1 \\ -1 & \implies y = \dfrac 1x = - 1 \end{cases} \\ (x,y) & = \boxed{\{(1,1),(-1,-1)\}} \end{aligned}

Callie Ferguson
Nov 21, 2020

eq1: \text{eq1: } ( x 2 + y 2 = 2 ) \left( x^2+y^2=2 \right)

eq2: \text{eq2: } ( x y = 1 ) \left( xy=1 \right)

STEP 1: \textbf{\text{STEP 1:}} Use eq. 2 to find eq. 1 in terms of x or y \text{ Use eq. 2 to find eq. 1 in terms of } x \text{ or } y

From eq. 1: \text{From eq. 1: } y = 1 x \large{\color{#E81990} y = \frac{1}{x}}

x 2 + y 2 = 2 x^2 + y^2 = 2 \Rightarrow [ x 2 + ( 1 x ) 2 = 2 ] \left[ x^2 + \left(\color{#E81990} \frac{1}{x} \right)^2=2\right]

STEP 2: \textbf{\text{STEP 2: }} Simplify the above equation such that it equals 0 \text{Simplify the above equation such that it equals 0}

[ x 2 + ( 1 x ) 2 = 2 ] \left[ x^2 + \left(\color{#E81990} \frac{1}{x} \right)^2=2\right] ( x 4 + 1 = 2 x 2 ) ( x 4 2 x 2 + 1 = 0 ) \Rightarrow \left( x^4 + 1 = 2x^2 \right) \Rightarrow \left( x^4 - 2x^2 + 1 = 0 \right)

STEP 3: \textbf{\text{STEP 3: }} Use u substitution; solve for u by factoring \text{Use } u \text{ substitution; solve for } u \text{ by factoring}

( x 4 2 x 2 + 1 = 0 ) ( u 2 2 u + 1 = 0 ) \left( x^4 - 2x^2 + 1 = 0 \right) \Rightarrow \left( \color{#20A900} u \color{#333333} ^2 - 2\color{#20A900} u \color{#333333} + 1 = 0 \right) , where u = x 2 \small{ \space \text{ , where } \color{#20A900} u = x^2 }

u 2 2 u + 1 = 0 ( u 1 ) ( u 1 ) = 0 \color{#20A900} u \color{#333333} ^2 - 2\color{#20A900} u \color{#333333} + 1 = 0 \Rightarrow (\color{#20A900} u \color{#333333} - 1)(\color{#20A900} u \color{#333333} - 1) = 0

u = 1 \rightarrow \color{#20A900} u \color{#333333} = 1

STEP 4: \textbf{\text{STEP 4: }} Solve for x \text{Solve for x}

u = 1 x 2 = 1 \color{#20A900} u \color{#333333} = 1 \Rightarrow x^2 = 1

x 2 = 1 x = ± 1 \sqrt{x^2} = \sqrt{1} \Rightarrow \boxed{ x = \pm \space 1}

Then you can solve for the corresponding y y values by plugging each x x value into eq1 \text{eq1} and eq2 \text{eq2} , which will give the solutions as:

( 1 , 1 ) and ( 1 , 1 ) \boxed{(1,1) \text{ and } (-1,-1)}

Matthew Feig
Nov 26, 2020

Subtract two times the second equation from the first equation.

x 2 + y 2 2 x y = 2 2 ( 1 ) = 0 x^2 + y^2 - 2xy = 2 - 2(1) = 0

This factors as ( x y ) 2 = 0 (x-y)^2 = 0 . So all solutions to this system must have x y = 0 x-y = 0 and x = y \boxed{x=y} .

Substituting this information into either original equation leads to y 2 = 1 y^2 = 1 , which has solutions y = ± 1 \boxed{y = \pm 1} .

Therefore, the system has two ordered pair solutions: ( 1 , 1 ) (1,1) and ( 1 , 1 ) (-1,-1) .

Nice. I formed equations x+y=(+/-)2 and x-y=0 which could establish the unique solutions

Michael Tamajong - 1 week, 5 days ago

Log in to reply

Yeah, I think that's the probably the way I did this problem at first.

Matthew Feig - 1 week, 1 day ago
Nikolas Кraj
Nov 26, 2020

Go to desmos.com and input the equations.

I had no paper at this moment.😑

Should have put a fi at the empty set b.t.w. .

Cindy Smith
Mar 7, 2021

(x^2)-1=1-(y^2). (x+1)(x-1)=1-(1/x^2)=[(x^2)-1)]/x^2=(x+1)(x-1)/x^2. (x^2)(x+1)(x-1)=(x+1)(x-1). x^2=1. x=+/-1. 1-1=1-y^2. y^2=1. y=+/-1. Answer x=+/-1 and y=+/-1. Verify. 1+1=2. (1)(1)=1 and (-1)*(-1)=1.

ChengYiin Ong
Jan 18, 2021

This is a cool application of AM-GM!

By AM-GM, we have 2 = x 2 + y 2 2 x y = 2 2=x^2+y^2\ge 2xy=2 which means that the equality case holds!

So, x 2 = y 2 x^2=y^2 but when x = y x=-y , there is no real solution.

So, x = y x=y which means x = y = ± 1 \boxed{x=y=\pm 1} .

Subham Karmakar
Jan 10, 2021

x y = 1 = > x 2 y 2 = 1 = > x 2 = 1 y 2 xy = 1 => x^2y^2 = 1 => x^2= \dfrac{1}{y^2}

Substituting the above result in the first equation,

y ² + 1 y ² 2 = 0 y ² + 1 y ² 2 y 1 y = 0 ( y 1 y ) 2 = 0 y 1 y = 0 y ² = 1 = > y = ± 1 y²+\dfrac{1}{y²} - 2=0 \\ \therefore y²+\dfrac{1}{y²}- 2\cdot y\cdot\dfrac{1}{y}= 0\\ \therefore \left(y-\dfrac{1}{y}\right)^2=0\\ \therefore y- \dfrac{1}{y}=0 \therefore y²= 1 => y= ±1 So when y = 1 , x = 1 y= 1, x=1 and y = 1 , x = 1 [ x y = 1 ] y=-1, x= -1 \hspace{6pt} [\because xy= 1]\\

Hence the required points are ( 1 , 1 ) (1,1) and ( 1 , 1 ) (-1,-1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...