Nonlinear System

Algebra Level 3

{ a b = 2 b c = 3 c a = 4 \large \begin {cases} ab = 2 \\ bc = 3 \\ ca = 4 \end {cases}

If a , b , a, b, and c c are real numbers, determine a + b + c \left| a + b + c \right| , to one decimal place.

Notation: | \cdot | denotes absolute value function.


The answer is 5.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

a b × c a = 2 × 4 a 2 b c = 8 3 a 2 = 8 a 2 = 8 3 a = ± 8 3 \begin{aligned} \color{#3D99F6}{ab} \times \color{#D61F06}{ca} & = \color{#3D99F6}{2} \times \color{#D61F06}{4} \\ a^2\color{#20A900}{bc} & = 8 \\ \color{#20A900}{3}a^2 & = 8 \\ \implies a^2 & = \frac 83 \\ a & = \pm \sqrt{\frac 83} \end{aligned}

a + b + c = a + 2 a + 4 a = a + 6 a = ± 8 3 ± 6 3 8 5.3 \begin{aligned} |a+\color{#3D99F6}{b}+\color{#D61F06}{c}| & = \left| a+\color{#3D99F6}{\frac 2a}+\color{#D61F06}{\frac 4a} \right| \\ & = \left| a+\frac 6a \right| \\ & = \left| \pm \sqrt{\frac 83} \pm 6 \sqrt{\frac 38} \right| \\ & \approx \boxed{5.3} \end{aligned}

Viki Zeta
Oct 8, 2016

a b = 2 b = 2 a b c = 3 2 a c = 3 c = 3 a 2 c a = 4 3 a 2 a = 4 a 2 = 8 3 a = ± 8 3 = ± 2 2 3 b = 2 a = 2 ± 2 2 3 = ± 3 2 c = 3 a 2 = ± 3 × 2 2 3 2 = ± 3 2 3 a + b + c = ± 2 2 3 + ± 3 2 + ± 3 2 3 = 5 2 3 + 3 2 = 13 6 5.3072 ab = 2 \\ b = \dfrac{2}{a} \\ bc = 3\\ \dfrac{2}{a}c = 3 \\ c = \dfrac{3a}{2} \\ ca = 4 \\ \dfrac{3a}{2}a = 4 \\ a^2 = \dfrac{8}{3} \\ a = \pm \sqrt[]{\dfrac{8}{3}} = \pm 2\sqrt[]{\dfrac{2}{3}} \\ b = \dfrac{2}{a} = \dfrac{2}{\pm 2\sqrt[]{\dfrac{2}{3}}} = \pm \sqrt[]{\dfrac{3}{2}} \\ c = \dfrac{3a}{2} = \dfrac{\pm3\times 2\sqrt[]{\dfrac{2}{3}}}{2} = \pm 3\sqrt[]{\dfrac{2}{3}} \\ \boxed{\therefore |a+b+c| = |\pm 2\sqrt[]{\dfrac{2}{3}} + \pm \sqrt[]{\dfrac{3}{2}} + \pm 3\sqrt[]{\dfrac{2}{3}}| = \\ 5\sqrt[]{\dfrac{2}{3}} + \sqrt[]{\dfrac{3}{2}} = \dfrac{13}{\sqrt[]{6}} \approx 5.3072}

Zee Ell
Oct 9, 2016

ab = 2 (i)

bc = 3 (ii)

ca = 4 (i)

It is easy to see, that either all three variables (a, b, c) are positive or they are all negative.

(i) × (ii) × (iii) :

a 2 b 2 c 2 = 24 a^2b^2c^2 = 24

a b c = ± 24 = 2 6 (iv) abc = ± \sqrt {24} = 2 \sqrt {6} \ \text { (iv) }

a = a b c b c = ± 2 6 3 a = \frac {abc}{bc} = \frac { ± 2 \sqrt {6} }{3}

b = a b c c a = ± 2 6 4 b = \frac {abc}{ca} = \frac { ± 2 \sqrt {6} }{4}

c = a b c a b = ± 2 6 2 c = \frac {abc}{ab} = \frac { ± 2 \sqrt {6} }{2}

Therefore

a + b + c = ± 2 6 ( 1 3 + 1 4 + 1 2 ) = ± 2 6 × 13 12 | a + b + c | = | ± 2 \sqrt {6} ( \frac {1}{3} +\frac {1}{4} + \frac {1}{2}) | = | ± 2 \sqrt {6} × \frac {13}{12} |

= 13 6 6 = 5.3 (1 d. p.) = \frac {13 \sqrt {6} }{6} = \boxed {5.3} \text { (1 d. p.) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...