It's All Tangents 2

Calculus Level 4

Let x < 1 |x| < 1 and ( 0 < a < 1 ) (0 < a < 1) and e e be Euler's number .

Let m ( x ) = lim n [ ( j = 1 n x j j = 1 n ( j n ) n x n j ) ( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) ] m(x) = \lim_{n \rightarrow \infty} \left[\left(\dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}}\right) * \left(\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}\right)\right] and p ( x ) = m ( x ) p(x) = -m(-x) .

(1): Show d d x ( m ( x ) ) x = a = d d x ( p ( x ) ) x = a \dfrac{d}{dx}(m(x))|_{x = a} = \dfrac{d}{dx}(p(x))|_{x = -a} .

(2): If A C \overleftrightarrow{AC} is tangent to m ( x ) m(x) at A : ( e 2 , m ( e 2 ) ) A: (e - 2,m(e -2)) and B D \overleftrightarrow{BD} is tangent to p ( x ) p(x) at B : ( 2 e , p ( 2 e ) ) B: (2 - e,p(2 - e)) , find the tangent lines to both curves and find the distance B C \overline{BC} to 6 decimal places.


The answer is 0.834912.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 3, 2018

lim n j = 1 n ( j n ) n x n j = j = 0 n 1 ( 1 j n ) n x j = n = 0 ( x e ) n = e e x \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j} = \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^{n} x^{j} = \sum_{n = 0}^{\infty} (\dfrac{x}{e})^n = \dfrac{e}{e - x} on x < e |x| < e

lim n j = 1 n x j j = 1 n ( j n ) n x n j = ( x 1 x ) ( e x e ) = x ( e x ) e ( 1 x ) \implies \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} x^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n x^{n - j}} = (\dfrac{x}{1 - x})(\dfrac{e - x}{e}) = \boxed{\dfrac{x(e - x)}{e(1 - x)}} on x < 1 |x| < 1

n = 1 ( 1 ) n + 1 x n n = 0 ( 1 ) n ( x e ) n = \implies \dfrac{\sum_{n = 1}^{\infty} (-1)^{n + 1} x^n}{\sum_{n = 0}^{\infty} (-1)^n (\dfrac{x}{e})^n} = n = 1 ( x ) n n = 0 ( x e ) n = \dfrac{-\sum_{n = 1}^{\infty} (-x)^n}{\sum_{n = 0}^{\infty} (\dfrac{-x}{e})^n} = x ( e + x ) e ( 1 + x ) \dfrac{x(e + x)}{e(1 + x)} on x < 1 |x| < 1

( j = 1 n ( 1 ) n j ( j n ) n x n j ) j = 1 n ( 1 ) j + 1 x j ) = e ( 1 + x ) x ( e + x ) \implies (\dfrac{\sum_{j = 1}^{n} (-1)^{n - j} (\dfrac{j}{n})^n x^{n - j})}{\sum_{j = 1}^{n} (-1)^{j + 1} x^{j}}) = \boxed{\dfrac{e(1 + x)}{x(e + x)}} on x < 1 |x| < 1

m ( x ) = ( e x ) ( 1 + x ) ( 1 x ) ( e + x ) \implies m(x) = \dfrac{(e - x)(1 + x)}{(1 - x)(e + x)}

p ( x ) = m ( x ) = ( e + x ) ( 1 x ) ( 1 + x ) ( e x ) \implies p(x) = -m(-x) = -\dfrac{(e + x)(1 - x)}{(1 + x)(e - x)}

m ( x ) = 1 + 2 ( e 1 ) 1 + e ( ( 1 x ) 1 e ( e + x ) 1 ) d d x ( ( m ( x ) ) = 2 ( e 1 ) 1 + e ( 1 ( 1 x ) 2 + e ( e + x ) 2 ) m(x) = 1 + \dfrac{2(e - 1)}{1 + e}((1 - x)^{-1} - e(e + x)^{-1}) \implies \dfrac{d}{dx}((m(x)) = \dfrac{2(e - 1)}{1 + e}(\dfrac{1}{(1 - x)^2} + \dfrac{e}{(e + x)^2})

p ( x ) = 1 + 2 ( e 1 ) 1 + e ( e ( e x ) 2 + 1 ( 1 + x ) 2 ) d d x ( ( p ( x ) ) = 2 ( e 1 ) 1 + e ( e ( e x ) 2 + 1 ( 1 + x ) 2 ) p(x) = -1 + \dfrac{2(e - 1)}{1 + e}(\dfrac{e}{(e - x)^2} + \dfrac{1}{(1 + x)^2}) \implies \dfrac{d}{dx}((p(x)) = \dfrac{2(e - 1)}{1 + e}(\dfrac{e}{(e - x)^2} + \dfrac{1}{(1 + x)^2})

For ( 0 < a < 1 ) d d x ( m ( x ) ) x = a = 2 ( e 1 ) 1 + e ( 1 ( 1 a ) 2 + e ( e + a ) 2 ) = d d x ( p ( x ) ) x = a (0 < a < 1) \implies \dfrac{d}{dx}(m(x))|_{x = a} = \dfrac{2(e - 1)}{1 + e}(\dfrac{1}{(1 - a)^2} + \dfrac{e}{(e + a)^2}) = \dfrac{d}{dx}(p(x))|_{x = -a}

Let x = e 2 d d x ( m ( x ) ) x = e 2 = d d x ( p ( x ) ) x = 2 e = ( e 2 3 e + 4 ) 2 ( 3 e ) 2 ( e 1 ) x = e - 2 \implies \dfrac{d}{dx}(m(x))|_{x = e - 2} = \dfrac{d}{dx}(p(x))|_{x = 2 - e} = \dfrac{(e^2 - 3e + 4)}{2(3 - e)^2(e - 1)} and A : ( e 2 , 1 3 e ) A: (e - 2, \dfrac{1}{3 - e}) and B : ( 2 e , 1 3 e ) B: (2 - e, -\dfrac{1}{3 - e}) .

Using point A : ( e 2 , 1 3 e ) y 1 3 e = e 2 3 e + 4 2 ( 3 e ) 2 ( e 1 ) ( x ( e 2 ) ) A: (e - 2, \dfrac{1}{3 - e}) \implies y - \dfrac{1}{3 - e} = \dfrac{e^2 - 3e + 4}{2(3 - e)^2(e - 1)}(x - (e - 2))

Using point B : ( 2 e , 1 3 e ) y + 1 3 e = e 2 3 e + 4 2 ( 3 e ) 2 ( e 1 ) ( x ( 2 e ) ) B: (2 - e, -\dfrac{1}{3 - e}) \implies y + \dfrac{1}{3 - e} = \dfrac{e^2 - 3e + 4}{2(3 - e)^2(e - 1)}(x - (2 - e))

Rewriting the tangent line to m ( x ) m(x) at A : ( e 2 , 1 3 e ) A: (e - 2, \dfrac{1}{3 - e}) as ( e 2 3 e + 4 ) x + 2 ( 3 e ) 2 ( e 1 ) y + ( e 2 ) ( e 2 3 e + 4 ) 2 ( 3 e ) ( e 1 ) = 0 -(e^2 - 3e + 4)x + 2(3 - e)^2(e - 1)y + (e - 2)(e^2 - 3e + 4) - 2(3 - e)(e - 1) = 0 and using point B : ( 2 e , 1 3 e ) B: (2 - e, -\dfrac{1}{3 - e}) \implies the distance B C BC from point B : ( 2 e , 1 3 e ) B: (2 - e, -\dfrac{1}{3 - e}) to line ( e 2 3 e + 4 ) x + 2 ( 3 e ) 2 ( e 1 ) y + ( e 2 ) ( e 2 3 e + 4 ) 2 ( 3 e ) ( e 1 ) = 0 -(e^2 - 3e + 4)x + 2(3 - e)^2(e - 1)y + (e - 2)(e^2 - 3e + 4) - 2(3 - e)(e - 1) = 0 is:

B C = 2 ( e 3 3 e 2 + 2 e 2 ) 4 e 6 56 e 5 + 317 e 4 918 e 3 + 1421 e 2 1104 e + 340 0.834912 BC = \dfrac{2(e^3 - 3e^2 + 2e - 2)}{\sqrt{4e^6 - 56e^5 + 317e^4 -918e^3 + 1421e^2 - 1104e + 340}} \approx \boxed{0.834912} .

In General: If y = f ( x ) y = f(x) and u = f ( x ) d y d x = f ( x ) u = -f(-x) \implies \dfrac{dy}{dx} = f'(x) and d u d x = f ( x ) d y d x x = a = f ( a ) = d u d x x = a \dfrac{du}{dx} = f'(-x) \implies \dfrac{dy}{dx}|_{x = a} = f'(a) = \dfrac{du}{dx}|x = -a .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...