Normalized Differentiation

Calculus Level pending

Solve for f ( r ) \displaystyle f(r) if 0 2 π ( 0 R ( f ( r ) r ) d r ) d θ = 1 \displaystyle \int^{2\pi}_0 \left(\int^R_0 (f(r)r)dr\right) d\theta=1 and a 2 f ( a r ) = 2 π f ( r ) 0 a R ( f ( u ) u ) d u , 0 < a 1 , 0 r R \displaystyle a^2f(ar)=2\pi f(r)\int^{aR}_0 (f(u)u)du, 0<a\le 1, 0\le r\le R .

f ( r ) = 2 π n r n 2 R n , 0 < n < \displaystyle f(r)=\frac{2\pi nr^{n-2}}{R^n}, 0<n<\infty f ( r ) = 2 π n R n r n 2 , 0 < n < \displaystyle f(r)=\frac{2\pi n}{R^nr^{n-2}}, 0<n<\infty f ( r ) = n 2 π R n r n 2 , 0 < n < \displaystyle f(r)=\frac{n}{2\pi R^nr^{n-2}}, 0<n<\infty f ( r ) = n r n 2 2 π R n , 0 < n < \displaystyle f(r)=\frac{nr^{n-2}}{2\pi R^n}, 0<n<\infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adam Hufstetler
Apr 24, 2017

Take the derivative with respect to a,

d d a ( a 2 f ( a r ) = 2 π f ( r ) 0 a R f ( u ) u d u ) 2 a f ( a r ) + a 2 r f ( a r ) = 2 π R ( 1 a ) f ( r ) F ( a R ) + 2 π a R 2 f ( r ) f ( a R ) \displaystyle \frac{d}{da} \left( a^2f(ar)=2\pi f(r)\int^{aR}_0f(u)udu \right)\Rightarrow 2af(ar)+a^2 rf' (ar)=2\pi R(1-a)f(r)F(aR)+2\pi aR^2 f(r)f(aR) .

If we set a = 1 a=1 the following differentiable equation can be obtained,

2 f ( r ) + r f ( r ) = 2 π R 2 f ( r ) f ( R ) \displaystyle 2f(r)+rf'(r)=2\pi R^2f(r)f(R) .

To solve first simplify to

f ( r ) + 2 2 f ( R ) π R 2 r f ( r ) = 0 \displaystyle f'(r)+\frac{2-2f(R)\pi R^2}{r}f(r)=0

whose solution is

f ( r ) = C e ( 2 f ( R ) π R 2 2 ) ln r = C r 2 f ( R ) π R 2 2 \displaystyle f(r)=Ce^{(2f(R)\pi R^2-2)\ln{r}}=Cr^{2f(R)\pi R^2-2} .
f ( r ) = C r n 2 , n = 2 f ( R ) π R 2 f(r)=Cr^{n-2}, n=2f(R)\pi R^2

To solve for C, use the regularizing function to obtain

1 = C 0 2 π 0 R r n 1 d r d θ C = n 2 π R n \displaystyle 1=C\int^{2\pi}_0\int^R_0 r^{n-1}dr d\theta\Rightarrow C=\frac{n}{2\pi R^n} .

Thus,

f ( r ) = n r n 2 2 π R n , 0 < n < \displaystyle f(r)=\frac{nr^{n-2}}{2\pi R^n}, 0<n<\infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...