Normalizing a 3D Wavefunction

Consider the wavefunction of a one-electron ion ϕ 1 , 0 , 0 ( r ) = C e x p ( Z r a B ) {\phi}_{1,0,0}(\overrightarrow{r}) = Cexp\left(\frac{-Zr}{{a}_{B}}\right)

(ignore the subscripts), where C C , Z Z and a B {a}_{B} are constants (atomic number and Bohr radius).

The constant you solve for is in the form C = α ( Z a B ) 3 / 2 C = \alpha{\left(\frac{Z}{{a}_{B}}\right)}^{3/2} . What is α \alpha ?


The answer is 0.564.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Nov 9, 2017

We have that ϕ ( 1 , 0 , 0 ) ( r ) = C exp ( Z r a B ) ϕ ( 1 , 0 , 0 ) ( r ) 2 d r = 1 \displaystyle \phi_{(1,0,0)}(\overrightarrow{r}) = C \exp{ \left( \dfrac{-Zr}{a_B} \right) } \ \implies \int_{-\infty}^{\infty} {|\phi_{(1,0,0)}{(\overrightarrow{r})|^2} dr} = 1 .

Hence, we proceed with spherical coordinates to get the following mess: C 2 exp ( 2 Z x 2 + y 2 + z 2 a B ) d x d y d z = 0 π 0 2 π 0 C 2 exp ( 2 Z ρ 2 sin 2 ϕ cos 2 θ + ρ 2 sin 2 ϕ sin 2 θ + ρ 2 cos 2 ϕ a B ) ρ 2 sin ϕ d ρ d θ d ϕ . \displaystyle \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C^2 \exp{\left( \dfrac{ -2Z\sqrt{x^2+y^2+z^2}}{a_B} \right)} dxdydz = \int_0^\pi \int_0^{2\pi} \int_0^{\infty} C^2 \exp{\left( \dfrac{-2Z\sqrt{\rho^2\sin^2{\phi}\cos^2{\theta} + \rho^2\sin^2{\phi}\sin^2{\theta} + \rho^2\cos^2{\phi}}}{a_B} \right)} \rho^2 \sin{\phi} d\rho d\theta d\phi. Factoring and the Pythagorean identity yields:

C 2 0 π 0 2 π 0 exp ( 2 Z ρ a B ) ρ 2 sin ϕ d ρ d θ d ϕ = C 2 π ( a B Z ) 3 = 1 \ \displaystyle C^2 \int_0^\pi \int_0^{2\pi} \int_0^{\infty} \exp{\left( -\dfrac{2Z\rho}{a_B} \right) }\rho^2 \sin{\phi} d\rho d\theta d\phi = \ C^2\pi \left( \dfrac{a_B}{Z} \right)^3 = \ 1 .

Since C = α ( Z a B ) 3 / 2 C = \alpha \left( \dfrac{Z}{a_B} \right)^{3/2} , we see that α = 1 π 0.564 \alpha = \sqrt{\dfrac{1}{\pi}} \approx \ \boxed{0.564} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...