Consider the wavefunction of a one-electron ion
(ignore the subscripts), where , and are constants (atomic number and Bohr radius).
The constant you solve for is in the form . What is ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have that ϕ ( 1 , 0 , 0 ) ( r ) = C exp ( a B − Z r ) ⟹ ∫ − ∞ ∞ ∣ ϕ ( 1 , 0 , 0 ) ( r ) ∣ 2 d r = 1 .
Hence, we proceed with spherical coordinates to get the following mess: ∫ − ∞ ∞ ∫ − ∞ ∞ ∫ − ∞ ∞ C 2 exp ( a B − 2 Z x 2 + y 2 + z 2 ) d x d y d z = ∫ 0 π ∫ 0 2 π ∫ 0 ∞ C 2 exp ( a B − 2 Z ρ 2 sin 2 ϕ cos 2 θ + ρ 2 sin 2 ϕ sin 2 θ + ρ 2 cos 2 ϕ ) ρ 2 sin ϕ d ρ d θ d ϕ . Factoring and the Pythagorean identity yields:
C 2 ∫ 0 π ∫ 0 2 π ∫ 0 ∞ exp ( − a B 2 Z ρ ) ρ 2 sin ϕ d ρ d θ d ϕ = C 2 π ( Z a B ) 3 = 1 .
Since C = α ( a B Z ) 3 / 2 , we see that α = π 1 ≈ 0 . 5 6 4 .